From 1 - 10 / 17
  • Knowledge of the nature of buildings within business precincts is fundamental to a broad range of decision making processes, including planning, emergency management and the mitigation of the impact of natural hazards. To support these activities, Geoscience Australia has developed a building information system called the National Exposure Information System (NEXIS) which provides information on buildings across Australia. Most of the building level information in NEXIS is statistically derived, but efforts are being made to include more detailed information on the nature of individual buildings, particularly in business districts. This is being achieved in Southbank through field survey work.

  • Indonesia is located in one of the most seismically active regions in the world and often experiences damaging earthquakes. In the past the housing sector has sustained more damage and losses than other sectors due to earthquakes. This is often attributed to the fact that the most common houses in Indonesia are non-engineered, built with poor quality workmanship, poor quality materials and without resilient seismic design features. However little effort has been made to quantify how fragile these houses are, or how the fragility of these houses may vary according to location or wealth. It is not possible to derive empirical fragility functions for Indonesia due to insufficient damage data. The aim of this study is to determine whether existing earthquake fragility functions can be used for common houses in Indonesia. Scenario damage analyses were undertaken several times using different sets of fragility functions for the 2006 Yogyakarta and 2009 Padang events. The simulated damage results were then compared to the damage observed post event to determine whether an accurate damage prediction could be achieved. It was found that the common houses in Yogyakarta and Central Java vary according to age, location and wealth and can be reasonably well represented by existing fragility functions. However, the houses in Padang and surrounding West Sumatra did not vary in a predictable manner and are more fragile than anticipated. Therefore, the fragility of the most common houses in Indonesia is not uniform across the country. This has important implications for seismic damage and risk assessment undertaken in Indonesia. <b>Citation:</b> Weber, R., Cummins, P. & Edwards, M. Fragility of Indonesian houses: scenario damage analysis of the 2006 Yogyakarta and 2009 Padang earthquakes. <i>Bull Earthquake Eng</i> (2024). https://doi.org/10.1007/s10518-024-01930-z

  • Papua New Guinea (PNG) lies in a belt of intense tectonic activity that experiences high levels of seismicity. Although this seismicity poses significant risks to society, the Building Code of PNG and its underpinning seismic loading requirements have not been revised since 1982. This study aims to partially address this gap by updating the seismic zoning map on which the earthquake loading component of the building code is based. We performed a new probabilistic seismic hazard assessment for PNG using the OpenQuake software developed by the Global Earthquake Model Foundation (Pagani et al. 2014). Among other enhancements, for the first time together with background sources, individual fault sources are implemented to represent active major and microplate boundaries in the region to better constrain the earthquake-rate and seismic-source models. The seismic-source model also models intraslab, Wadati–Benioff zone seismicity in a more realistic way using a continuous slab volume to constrain the finite ruptures of such events. The results suggest a high level of hazard in the coastal areas of the Huon Peninsula and the New Britain – Bougainville region, and a relatively low level of hazard in the southwestern part of mainland PNG. In comparison with the seismic zonation map in the current design standard, it can be noted that the spatial distribution of seismic hazard used for building design does not match the bedrock hazard distribution of this study. In particular, the high seismic hazard of the Huon Peninsula in the revised assessment is not captured in the current building code of PNG. <b>Citation:</b> Ghasemi, H., Cummins, P., Weatherill, G. <i>et al.</i> Seismotectonic model and probabilistic seismic hazard assessment for Papua New Guinea. <i>Bull Earthquake Eng, </i><b>18</b>, 6571–6605 (2020). https://doi.org/10.1007/s10518-020-00966-1

  • <b> This service will be decommissioned on 10/10/2024. The replacement service (with changes) is located at https://services.ga.gov.au/gis/rest/services/NEXIS_Residential_Dwelling_Density_v15/MapServer/</b> NEXIS (National Exposure Information System) Residential Dwelling Density web service is a set of four raster layers representing the density of residential dwellings across Australia at different scales and resolutions.

  • This web service shows areas or locations occupied by an existing high-density urban development or known individual building structures in peri-urban and remote locations. Data used in this service is of varying levels of coverage and quality since it is aggregated from a variety of sources. The intended purpose of the service is to provide preliminary, first-pass information about urban environment, building structures and their distribution in landscape, as one of constraints on future development. Users should carry out further and more detailed investigations because this information is not meant to be a definitive source or support engineering phase planning. The service has layer scale dependencies.

  • NEXIS (National Exposure Information System) Residential Dwelling Density is a set of four raster layers representing the density of residential dwellings across Australia at different scales and resolutions. Resolutions include 2km, 1km, 500m and 100m. The Australian Bureau of Statistics (ABS) defines dwelling units as self-contained suites of rooms including cooking and bathing facilities and intended for long-term residential use. Such dwelling units include houses-detached buildings used for long-term residential purposes-and other dwellings including flats. This product is based on NEXIS version 13 (2022) data.

  • <b> This service will be decommissioned on 10/10/2024. The replacement service (with changes) is located at https://services.ga.gov.au/gis/rest/services/NEXIS_Residential_Dwelling_Density_v15/MapServer/</b> NEXIS (National Exposure Information System) Residential Dwelling Density web service is a set of four raster layers representing the density of residential dwellings across Australia at different scales and resolutions.

  • <b> This service will be decommissioned on 10/10/2024. The replacement service (with changes) is located at https://services.ga.gov.au/gis/rest/services/NEXIS_Residential_Dwelling_Density_v15/MapServer/</b> NEXIS (National Exposure Information System) Residential Dwelling Density web service is a set of four raster layers representing the density of residential dwellings across Australia at different scales and resolutions.

  • Earthquake design standards seek to ensure that structures are adequately resilient to local hazard. The probabilistic hazard that forms the basis of the design loadings used and the methods by which they are calculated typically reflect the best available information and practices at the time. This was the case with the earthquake loadings standard for the design of PNG buildings that was published in 1982. However, with the collaborative development of a better understanding of earthquake hazard across PNG the need to adjust the earthquake loadings for design through an Interim Amendment was highlighted. This key step would precede any more general and broader update of national building regulations. In this paper the process taken to translate the latest earthquake hazard assessment for PNG, PSHA19, to design practice is described. This included an assessment of the level of current under-design and the engagement with stakeholders in PNG to assess their needs through workshop activity. The central document to this process, “The Interim Amendment to PNGS 1001-1982: Part 4: Earthquake Design Actions”, is described and goes beyond the incorporation of the new design hazard to the introduction of new approaches for assessing earthquake loads that more closely align with those used in New Zealand and Australia. Preparation and delivery of seminars in-country to familiarise design professionals with its use are also described along with the series of professional development video products also developed for use in PNG. Finally, future needs in regulatory development in PNG are outlined. Presented at the 2023 Australian Earthquake Engineering Society (AEES) National Conference

  • Earthquake hazard was not fully recognised in Australian building design until the mid-1990's. This oversight has resulted in a legacy of vulnerable buildings that can be readily damaged in moderate to severe Australian earthquakes. In particular, older unreinforced masonry buildings are particularly vulnerable and very common in the centres of our large cities and towns with significant heritage value. What can be done to cost-effectively address the risk they represent to people in the community and to protect these valued assets from future damaging earthquakes? With a focus on the Heritage town of York and the state capital of Melbourne, strategies have been examined as to effectiveness which have included a virtual retrofit to progressively reduce damage, injury, economic losses and emergency management logistics. Communication products derived from this work are described and initiatives to apply them in other Australian communities highlighted.