From 1 - 10 / 19
  • The Australian Passive Seismic Array Project (AusArray) program was developed from a long history of passive seismic imaging in Australia involving many contributors. Building on this history, the Australian Government and academia have united around AusArray. The objective is a standardised and quality controlled national passive seismic data coverage and an updatable national seismic velocity model framework that can be used as a background for higher-resolution studies. This document details the field activities and equipment preparation for temporary passive seismic station deployment, service and retrieval. Equipment cleaning and testing and database details are also described. The standard operating procedures applied during these activities were established during the deployment of two temporary passive seismograph arrays under the Australian Government’s Exploring for the Future (EFTF) program. These arrays consisted of 120–130 stations deployed in the Northern Territory and Queensland for over a year in a grid pattern with a lateral spacing of half a degree (~55 km). The temporary passive seismograph stations comprised Nanometrics Trillium Compact 120S broadband seismic sensors connected to a Güralp minimus digitiser. Batteries charged by a solar panel powered both instruments. Each station in the array was serviced, i.e. repairs if required and interim data was retrieved, at least once during the deployment.

  • Exploration and management of minerals, energy and groundwater resources requires robust constraints on subsurface geology. Over the last decade the passive seismic technique has grown in popularity as it is one of a handful of non-invasive methods of imaging the subsurface. Given regional imaging relies on comparing records of ground motion between simultaneous deployments of seismometers deployed for over a year, consistency and quality of data collection lies at the heart of this technique. Here, we summarise the standard operating procedures developed by Geoscience Australia over the last 6 years for deployment, servicing and retrieval of passive seismic arrays. Our purpose is to share our experience and thereby contribute to improving the quality of passive seismic data being acquired across Australia. <b>Citation:</b> Holzschuh J., Gorbatov A., Glowacki J., Cooper A. & Cooper C., 2022. AusArray temporary passive seismic station deployment, servicing and retrieval: Geoscience Australia standard operating procedures. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/146999

  • Geoscience Australia’s Exploring for the Future program (EFTF) provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. The Australian Passive Seismic Array Project (AusArray) program developed from a long history of passive seismic imaging in Australia involving many contributors. Building on this history, the Australian Government (EFTF), academia and state governments have united around AusArray. The objective is a standardised and quality controlled national passive seismic data coverage and an updatable national seismic velocity model framework that can be used as a background for higher-resolution studies. The AusArray passive seismic data are supplemented with active seismic data that can provide P-wave and S-wave velocity information for the near surface down to about 50 m depth. This near-surface velocity data will provide constraints for some AusArray passive seismic data modelling to obtain more reliable depth models. This document details the active seismic data acquisition using TROMINO® three-axis broadband seismometers using a wireless trigger and hammer source. Equipment packing, field operations, data extraction and preparation, and Multichannel Analysis of Surface Waves (MASW) modelling are described.

  • The Exploring for the Future program Showcase 2024 was held on 13-16 August 2024. Day 2 - 14th August talks included: <b>Session 1 - Architecture of the Australian Tectonic Plate</b> <a href="https://youtu.be/a8jzTdNdwfk?si=OWNlVR-FLDhF1GVM">AusArray: Australian lithosphere imaging from top to bottom</a> - Dr Alexei Gorbatov <a href="https://youtu.be/j5ox8Ke5n6M?si=YkfDno2xmZXueS1b">AusLAMP: Mapping lithospheric architecture and reducing exploration space in Australia</a> - Jingming Duan <a href="https://youtu.be/qZ6wjzx_dNc?si=NjDEzvqyEeM24-E8">Constraining the thermomechanical and geochemical architecture of the Australian mantle: Using combined analyses of xenolith inventories and seismic tomography</a> - Dr Mark Hoggard <b>Session 2 - Quantitative characterisation of Australia's surface and near surface</b> <a href="https://youtu.be/nPfa_j3_dos?si=mktfIJWXeLElIOK4">AusAEM: The national coverage and sharpening near surface imaging</a> - Dr Anandaroop Ray <a href="https://youtu.be/SU6ak98JvAw?si=DQPovulHa4poqcm0">Unlocking the surface geochemistry of Australia</a> - Phil Main <a href="https://youtu.be/Xtm45CT6e-s?si=JHU7J-ktgVrbj1Ke">Spotlight on the Heavy Mineral Map of Australia</a> - Dr Alex Walker <b>Session 3 – Maps of Australian geology like never before</b> <a href="https://youtu.be/aRISb1YYigU?si=3byJbqW0qRTqCB8-">An Isotopic Atlas of Australia: Extra dimensions to national maps</a> - Dr Geoff Fraser <a href="https://youtu.be/khSy-WAkw-w?si=F-Y67FX3jXN5zZaz">First continental layered geological map of Australia</a> - Dr Guillaume Sanchez <a href="https://youtu.be/Z3GlCJepLK4?si=k_tbaKdmxGBmoSro">An integrated 3D layered cover modelling approach: Towards open-source data and methodologies for national-scale cover modelling</a> - Sebastian Wong View or download the <a href="https://dx.doi.org/10.26186/149800">Exploring for the Future - An overview of Australia’s transformational geoscience program</a> publication. View or download the <a href="https://dx.doi.org/10.26186/149743">Exploring for the Future - Australia's transformational geoscience program</a> publication. You can access full session and Q&A recordings from YouTube here: 2024 Showcase Day 2 - Session 1 - <a href="https://www.youtube.com/watch?v=EHBsq0-pC8c">Architecture of the Australian Tectonic Plate</a> 2024 Showcase Day 2 - Session 2 - <a href="https://youtube.com/watch?v=xih4lbDk-1A">Quantitative characterisation of Australia's surface and near surface</a> 2024 Showcase Day 2 - Session 3 - <a href="https://www.youtube.com/watch?v=qeTLc1K-Cds">Maps of Australian geology like never before</a>

  • This animation shows how passive seismic surveys Work. It is part of a series of Field Activity Technique Engagement Animations. The target audience are the communities that are impacted by our data acquisition activities. There is no sound or voice over. The 2D animation includes a simplified view of what passive seismic equipment looks like, what the equipment measures and how the survey works.

  • Geoscience Australia, in collaboration with state government agencies, has been collecting magnetotelluric (MT) data as part of the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) for several years. This program aims to map the electrical resistivity of the rock layers, at depths from ten kilometres to hundreds of kilometres, across the entire continent. AusLAMP sites are each about 55 km apart from each other. Locations are chosen in consultation with landholders and other stakeholders to minimise impacts and avoid disturbance.MT data is collected using sensors that record naturally occurring variations of the Earth’s magnetic and electric fields. The equipment does not produce or transmit and signals. After four to six weeks the equipment is retrieved and the site restored to its original condition.

  • <div><strong>Output Type:</strong> Exploring for the Future Extended Abstract</div><div><br></div><div><strong>Short Abstract: </strong>Knowledge of lithospheric structure is crucial information for resources exploration and deepening understanding of natural hazards. Available tomographic models of the Australian lithosphere often agree on large scale features, but in detail significant differences remain. Consequently, there is a growing need for a fully verifiable lithospheric model of Australia. Geoscience Australia has committed to develop such a model and share all results and datasets involved in model building. Here we present the first results of a full waveform inversion tomography model of Australia lithosphere down to a period of 70 s potentially able to resolve half wavelengths across continental Australia. Our model is based on seismic records from the National Seismic Network and legacy datasets with the addition of data from the currently deployed continental-scale 2° AusArray survey, which includes stations installed in previously inaccessible areas. We start with 193 earthquakes (moment magnitude (Mw) 6.2–7.5) and add 165 more earthquakes (Mw &gt;5.0) once the model progressed to a period of 70 s. Model resolution will improve over time as more data become available and more time is allowed for computation and quality control. As further iterations continue, and the inversion frequency range expands to higher frequencies, body waves can be exploited in full to constrain the model in detail and provide enough information for all components of the wavefield, building high-resolution tomographic models at a period of 40 s and below. Our model reveals previously observed first order features while revealing finer detail across much of continental Australia.</div><div><br></div><div><strong>Citation: </strong>Holzschuh, J., Gorbatov, A., Hejrani, B., Boehm, C. &amp; Hassan, R., 2024. Tomographic model of the Australian region from seismic full waveform inversion. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://doi.org/10.26186/149404</div>

  • <div><strong>Output Type: </strong>Exploring for the Future Extended Abstract</div><div><br></div><div><strong>Short Abstract:</strong> Under the Exploring for the Future (EFTF) program, Geoscience Australia staff and collaborators engaged with land-connected stakeholders that managed or had an interest in land comprising 56% of the total land mass area of Australia. From 2020 to 2023, staff planning ground-based and airborne geophysical and geological data acquisition projects consulted farmers, National Park rangers and managers, Native Title holders, cultural heritage custodians and other land-connected people to obtain land access and cultural heritage clearances for surveys proposed on over 122,000 parcels of land. Engagement did not always result in field activities proceeding. To support communication with this diverse audience, animations, comic-style factsheets, and physical models, were created to help explain field techniques. While the tools created have been useful, the most effective method of communication was found to be a combination of these tools and open two-way discussions.</div><div><br></div><div><strong>Citation: </strong>Sweeney, M., Kuoni, J., Iffland, D. &amp; Soroka, L., 2024. Improving how we engage with land-connected people about geoscience. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts. Geoscience Australia, Canberra. https://doi.org/10.26186/148760</div>

  • <div><strong>Output type: </strong>Exploring for the Future Extended Abstract</div><div><br></div><div><strong>Short Abstract: </strong>Seismic tomography has been used for more than 50 years to map the seismic velocity structure of Earth’s interior. Here, we use data from the Exploring for the Future program, AusArray 2o deployment, to perform ambient noise tomography of the Australian continent. In this approach, stacks of cross-correlations of background seismic noise recorded by pairs of seismometers are employed to extract an approximation to the surface wave trains travelling between the seismometers. We have developed a semi-automatic approach to estimate dispersion properties of surface waves as a function of frequency at 0.01 – 1 Hz and deployed the largest ever network of broadband seismometers across the country to image the continental crust of Australia. In this study, we present an ambient noise tomography map of the Australian continent at 0.4 Hz (2.5 seconds), which is sensitive to the top 3 km of the Earth’s crust. Our model shows improved resolution across the country, for example, we observed a large low-velocity anomaly (~2.5 km/s) which delineates the shape of the entire Caning basin in Western Australia. This basin has never been imaged at this detail before, as previous tomographic studies do not measure surface wave velocity up to 0.4 Hz and do not have stations deployed in this area. The outcome demonstrates the utility of the ambient noise tomography method of imaging first-order features, that could be built upon for resource potential assessments.</div><div><br></div><div><strong>Citation: </strong>Hejrani B., Hassan R., Gorbatov A. & Zhao J., 2024. Towards continental-scale ambient noise tomography of Australia: a preliminary result from AusArray data. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://doi.org/10.26186/149637</div>

  • <div>As part of the first phase (2016-2020) of the Exploring for the Future (EFTF) program, Geoscience Australia deployed 119 broad band seismic stations in northern Australia. This deployment was part of the Australian Passive Seismic Array (AusArray) Project. Data from these stations were used to image the seismic structure using various techniques, including ambient noise tomography (ANT). The first ANT model (Hejrani et al, 2020) was focused on a narrow range of frequencies and used the Hawkins and Sambridge (2019) approach to estimate dispersion curves. This new approach starts from the original work by Aki (1957) to estimate phase velocity in the frequency domain, and then takes a step further to ensure a smooth curve is achieved. In Hejrani et al., (2022), using minimum Signal-to-Noise-Ratio (SNR) threshold of 2, about 4,000 data points (out of 7,000+) were used to generate surface wave velocity maps at a resolution of 1 degree at four frequencies (sensitive to different depths). This model was subsequently updated in September 2021 by using all 7,000+ data points (no SNR threshold) of phase velocity measurements across AusArray year one to provide a 0.25 degree resolution model. All dispersion curves regardless of their quality were utilized. A number of artefacts were identified in that model, which motivated further investigations. During 2022, I developed a new automated and scalable approach to estimate dispersion curves, which was completed in December 2022. This new method starts from the original idea by Aki (1957), but takes a different approach to stabilize the dispersion curves and to avoid cycle skipping. </div><div>This record represents the preferred 2D velocity models for AusArray year one data based on the newly estimated dispersion curves and a comparison with previous models and interpretations; is an update from Hejrani et al. (2020) and should be read in conjunction. Work is currently under way to invert these 2D surface wave models to obtain 3D velocity models for the crust and mantle. Such 3D velocity models would be suitable for joint interpretations with other data such active seismic, gravity and magnetic. The code will be made publicly available at the conclusion of EFTF.</div>