From 1 - 2 / 2
  • This image is a greyscale image of the Total Magnetic Intensity (TMI) Anomaly Image of Australia with Variable Reduction to Pole (VRTP). Total magnetic intensity (TMI) data measures variations in the intensity of the Earth magnetic filed caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. A variable reduction to Pole is aimed at locating magnetic anomalies exactly above their source bodies and without any distortion. The image is created from the 2019 variable reduction to Pole of the TMI grid with a grid cell size of ~3 seconds of arc (approximately 80 m). This image only includes airborne-derived TMI data for onshore and near-offshore continental areas. The image provides a better interpretation of the magnetic data by giving an accurate location of magnetic source bodies.

  • <div><strong>Purpose</strong></div><div>This package comprises a set of 86 thematic grids (rasters) derived from national coverages of gravity and magnetic survey data. These datasets provide valuable information about the distribution of geological features, physical property variations, and the composition of the Earth's crust. All grids have been resampled to the same cell size, map extent, and projection to allow them to be integrated into predictive mapping and modelling workflows using machine learning. Users can download individual grids or the whole grid package. </div><div>&nbsp;</div><div><strong>Input Data</strong></div><div>The following Australian national datasets were used:</div><div>1.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;2019 Australian National Gravity Grids: Free Air Anomaly, Complete Bouguer Anomaly, De-trended Global Isostatic Residual, 400 m cell size (Lane <em>et al</em>., 2020).</div><div>2.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Total Magnetic Intensity (TMI) Grid of Australia 2019 - seventh edition Enhanced Products Package (Morse, 2020).</div><div><br></div><div><strong>Processing</strong></div><div>All processing of the national grids were undertaken using Intrepid software. The following was performed on the input data:</div><div>1.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The grids were reprojected from GDA94 geodetic to Australian Albers (EPSG 3577). </div><div>2.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The grids were aligned to the same grid cell registration point and interpolated to fit within an 80 m cell size using a cubic spline method to ensure that the cell locations for all images are common.</div><div>3.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Various Fast Fourier Transforms (FFT) were applied to each grid (see ‘Grids_for_Machine_Learning_dataset_notes.pdf’). </div><div>&nbsp;</div><div><strong>Metadata (all grids)</strong></div><div>·&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Datum: GDA94</div><div>·&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Projection: Australian Albers (EPSG 3577)</div><div>·&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Cell size: 80 m</div><div>·&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;File format: GeoTiff (.tif)</div> <b>Data is available on request from clientservices@ga.gov.au - Quote eCat# 149130</b>