From 1 - 10 / 41
  • The ability of thermal and shortwave infrared spectroscopy to characterise composition and textural was evaluated using both particle size separated soil samples and raw soils. Particle size analysis and separation into clay, silt and sand sized soil fractions was undertaken to examine possible relationships between quartz and clay mineral spectral signatures, and soil texture. Spectral indices, based on thermal infrared specular and volume scattering features, were found to discriminate clay mineral-rich soil from mostly coarser quartz-rich sandy soil, and to a lesser extent, from the silty quartz-rich soil. Further investigations were undertaken using spectra and information on 51 USDA and other soils within the ASTER Spectral Library to test the application of shortwave, mid- and thermal infrared spectral indices for the derivation of clay mineral, quartz and organic carbon content. A non linear correlation between quartz content and a TIR spectral index based on the 8.62 im was observed. Preliminary efforts at deriving a spectral index for the soil organic carbon content, based on 3.4 - 3.5 im fundamental H-C stretching vibration bands were also undertaken with limited results.

  • We describe the information content of soil visible-near infrared (vis-NIR) reflectance spectra and map their spatial distribution across Australia. The spectra of 4030 surface soil sample from across the country were measured using a vis-NIR spectrometer with a wavelength range between 350-2500 nm. The spectra were treated using a principal component analysis (PCA) and the resulting scores were mapped by ordinary point kriging. The largely dominant and common feature in the maps was the difference between the more expansive, older and more weathered landscapes in the centre and west of Australia and the generally younger, more complex landscapes in the east. A surface soil class map derived from the clustering of the principal components was similar to an existing soil classification map. We show that vis-NIR reflectance spectra: (i) provide an integrative measure to rapidly and efficiently measure the constituents of the soil, (ii) can replace the use of traditional soil properties to describe the soil and make geomorphological interpretations of its spatial distribution and (iii) can be used to classify soil objectively.

  • Introduction Low-density geochemical surveys provide a cost-effective means to assess the composition of near-surface materials over large areas. Many countries in the world have already compiled geochemical atlases based on such data. These have been used for a number of applications, including: - establish baselines from which future changes can be measured - design geologically sensible targets for remediation of contaminated sites - support decision-making regarding appropriate land-use - explore for natural resources - study links between geology and plant/animal health (geohealth) A first pilot project was initiated to help establish sampling and analytical protocols relevant to Australian landscapes and climates. The Riverina region was chosen for this study because of its crucial economic, environmental and societal importance within the Murray-Darling basin. The region is a prime agricultural area, is bordered to the south by the Victorian goldfields, and is home to 11% of the Australian population. Results of this study are presented here. Methods Using a hydrological analysis, 142 sites near the outlets of large catchments were selected within the 123,000 km2 survey area (1 site per 866 km2 on average). At each site, two 10-cm thick overbank sediment samples were taken, one at the surface ('top overbank sediment', TOS) and the other between 60 and 90 cm depth (`bottom overbank sediment', BOS). These were described, dried, sieved (<180 m) and analysed chemically for 62 elements. Exploratory data analysis was undertaken and geochemical maps (various styles are shown here) were prepared. Results and discussion The geology of the area is dominated by Cainozoic sediments found in low-relief plains over the vast majority of the Riverina. The eastern and southern fringes of the area form higher relief landforms developed on outcropping or subcropping Palaeozoic sedimentary, mafic and felsic volcanic and felsic intrusive rocks. The geochemical results of the survey are independently corroborated by the good match between the distributions of K, U and Th concentrations in TOS and airborne gamma-ray maps. The distribution of Ca in BOS indicates generally higher concentrations in the northern part of the study area, which is also reflected in higher soil pH values there. Such data have implications for soil fertility and management in agricultural areas. In terms of applications to mineral exploration, dispersion trains of typical pathfinder elements for gold mineralisation, like As and Sb are clearly documented by the smoothly decreasing concentrations from south (near the Victorian goldfields) to north (over sediments from the Murray basin). Chromium is an element that can be associated with ill-health in animals and humans when present over certain levels. There is a smooth increase in Cr concentration from north to south, and the two sites with the highest values can be correlated with a ridge of Cambrian mafic volcanics. High total Cr concentrations in the Riverina are unlikely, however, to lead to serious health problems as only a very small proportion of Cr will be bioavailable. Conversely, some elements can be present at concentrations that are too low for optimum plant growth, such as potentially Mo. The distribution map for this element shows a general decrease from south to north. Given its lower bioavailability in acid soils, Mo is likely to be deficient in the south of the region, despite higher total concentrations here. Farmers report the necessity to use Mo-enriched fertilisers in this area. Conclusions Low-density geochemical surveys can be conducted in Australia using common regolith sampling media. They provide a cost-effective, internally consistent dataset that can be used by to support a variety of critical economic, environmental and societal decisions.

  • Geochemical data from two continental-scale soil surveys in Europe and Australia are presented and compared. Internal project standards were exchanged to assess comparability of analytical results. The total concentration of 26 elements (Al, As, Ba, Ca, Ce, Co, Cr, Fe, Ga, K, Mg, Mn, Na, Nb, Ni, P, Pb, Rb, Si, Sr, Th, Ti, V, Y, Zn, and Zr), Loss On Ignition (LOI) and pH are found to be comparable. In addition, for the first time, directly comparable data for 14 elements in an aqua regia extraction (Ag, As, Bi, Cd, Ce, Co, Cs, Cu, Fe, La, Li, Mn, Mo, and Pb) are provided for both continents. Median soil compositions are remarkably close, though overall Australian soils are slightly depleted in all elements with the exception of SiO2 and Zr. This is interpreted to reflect the overall longer and, in places, more intense weathering in Australia. Calculation of the Chemical Index of Alteration (CIA) gives a median value of 72% for Australia compared to 60% for Europe. In general, element concentrations vary over 3 (and up to 5) orders of magnitude. Several elements (As, Ni, Co, Bi, Li, Pb, Mn, and Cu) have a lower element concentration by a factor of 2-3 in the soils of northern Europe compared to southern Europe. The break in concentration coincides with the maximum extent of the last glaciation. In Australia the central region with especially high SiO2 concentrations is commonly depleted in many elements. The data provided define the natural background variation for two continents on both hemispheres based on real data. Judging from the experience of these two continental surveys it can be concluded that analytical quality is the key requirement for the success of global geochemical mapping.

  • This report deals with an investigation of the electrical resistivities of a variety of wet surface soils, gravels and sands. The work may be regarded as preliminary to an investigation by Mr. R.F. Thyer into the detection of electrically resistive bodies buried in wet soils at shallow depths. It was required to determine the range over which the resistivities of surface soils vary, and also the changes that may be expected in any one type of soil between measurements made within any 1 foot of each other. Measurements were made in four localities, three being in the bed or on the banks of the Molonglo River, where the surface materials are sand, gravel, silts, and in some places, clay. The fourth locality was near the head of Sullivan's Creek, where the soil is a heavy black clay.

  • This report deals with the problem of detecting electrically resistive bodies of small size buried at shallow depths in wet soils. Detection was attempted by means of measurements made on the surface of the soil using the electrical resistivity method. The present report can be regarded as an extension of an earlier one (No. 1943/64B). The purpose of the new tests was twofold. Firstly it was proposed to make tests of 'normal' resistivity effects using a constant electrode arrangement and measuring the resistivity at closely spaced points on water saturated soils. The second part of the testing programme was contingent on the first part proving that under saturated conditions soil resistivities were sufficiently constant to warrent an attempt being made at detection. If this condition of constancy existed, it was proposed to extend the work of the tests, reviewed in the previous report, to actual field conditions. This has been done and the present report deals with the results obtained.

  • The present report is a compilation of 531 geochemical maps that result from the National Geochemical Survey of Australia. These constitute the first continental-scale series of geochemical maps based on internally consistent, state-of-the-art data pertaining to the same sampling medium collected, prepared and analysed in a uniform and well documented manner and over a short time period (four years). Interpretations of the data and maps will be published separately.

  • Recently, continental-scale geochemical surveys of Europe and Australia were completed. Thanks to having exchanged internal project standards prior to analysing the samples, we can demonstrate direct comparability between these datasets for 10 major oxides (Al2O3, CaO, Fe2O3, K2O, MgO, MnO, Na2O, P2O5, SiO2 and TiO2), 16 total trace elements (As, Ba, Ce, Co, Cr, Ga, Nb, Ni, Pb, Rb, Sr, Th, V, Y, Zn and Zr), 14 aqua regia extracted elements (Ag, As, Bi, Cd, Ce, Co, Cs, Cu, Fe, La, Li, Mn, Mo and Pb), Loss On Ignition (LOI) and pH. By comparing these new datasets to one another, we can learn lessons about continental-scale controls on soil geochemistry and about critical requirements for global geochemical mapping. Although the median soil compositions of both continents are overall quite similar, the Australian median values are systematically lower, except for SiO2 and Zr. This reflects the generally longer and, locally more intense weathering in Australia (median Chemical Index of Alteration values are 72 and 60% for Australia and Europe, respectively). We found that element concentrations typically span 3 (and up to 5) orders of magnitude on each continent. The comparison of 2 continental geochemical surveys shows that the most critical requirement for global geochemical mapping is good analytical quality. Only where a comprehensive quality control program, including field and laboratory duplicates, internal project standards and Certified Reference Materials, is implemented and documented, are the results credible and comparable with other datasets.

  • As a results of representations made to the Bureau of Mineral Resources by the Australian Aluminium Production Commission during 1948 a brief examination was made in July, 1949, of the area known as Sogeri Plateau which is situated some 24 miles east-north-east of Port Moresby. The object of the inspection was to determine whether any bauxitic laterite was present on the plateau and if so to obtain samples for chemical determination of alumina soluble in caustic soda solution, that is, alumina extractable by the Bayer process. Three car traverses of the area were made - one along the Sogeri-Uberi road, one along the Sogeri-Subitana road and one along the Sogeri-Eilogo road. Two grab samples were collected and sent for analysis. The findings of the examination of the area and the results of the chemical analyses are described in this report.

  • A fundamental component of soils is its mineralogy which is a key driver/indicator of important soil properties/processes such as soil pH (acidity), metal availability (e.g. Al, K, Fe, Si, Ca, Mg) and water content/permeability/runoff. However, soil mineralogy is not routinely measured as part of current soil mapping programs at the paddock-, catchment- or continental-scales mainly because currently deployed measurement technologies are not able to deliver soil mineralogy directly, though remote radiometric and microwave sensing technologies do provide useful soil information. In contrast, mineralogy is now being efficiently delivered to the Australian minerals exploration industry through a new generation of field, airborne and spaceborne hyperspectral technologies (www.hyvista.com; nvcl.csiro.au/). This mineral information includes two of the three major soil mineral components, namely: clays (e.g. kaolinite, illite, smectite); and iron/aluminium oxyhydroxides (e.g. hematite. goethite, gibbsite), with specific information being delivered on their composition, abundances and physicochemistries (disorder and chemistry). The third dominant soil mineral component, quartz, is also spectrally measurable but has diagnostic features at wavelengths longer than current "operational" hyperspectral systems. These hyperspectral technologies thus provide an excellent opportunity to transfer mineral mapping capabilities being developed for the minerals industry into the soil mapping application, especially for establishing baseline inventories of soil mineral composition and providing a possible mechanism for quantitative monitoring of change in soil properties related to its mineralogy (e.g. pH, soil loss, water effects, metal activities and possibly soil carbon and salinity). This opportunity is explored using results from a collaborative geological remote sensing project between the CSIRO, the Geological Survey of Queensland and Geoscience Australia (www.em.csiro.au/NGMM, www.nrw.qld.gov.au/science/geoscience/projects/hyperspectral.html) which involves the collection and processing of 25,000 km2 of airborne HyMap imagery (~300 flight-lines at 5m pixel resolution and totalling >1 Terabyte of raw data) from across Queensland, including areas covered by airborne radiometrics and published geology at 1:100 000 scale around the Mount Isa region. The processed hyperspectral data show that lateritic materials in the Tick Hill area comprise relatively abundant iron oxides and kaolinite (poorly ordered) whereas the radiometrics shows these areas as being relatively high Th and U counts. This kaolinite is presumably developed in response to more acid conditions and/or better (downward percolating) drainage. The hyperspectral data also maps extensive areas of Al-smectite (montmorillonite) associated with the weathering of carbonate (calcite and dolomite) parent rocks or as "pedogenic" occurrences in alluvium/colluvium, with the latter sometimes associated with abundant opaline silica (also mapped using the hyperspectral data). These Al-rich smectites are formed in more alkaline conditions where there is sufficient Ca or Mg and water at the near surface and typically show in the radiometric as being poor in K and Th. Muscovite (water-poor, K-bearing white mica) is mapped over exposed parent rocks whereas illite (water-rich, K-bearing white mica) is typically mapped in weathered materials, including many soils and dried lake beds where there is sufficient available K. The radiometric data typically shows these areas as being K-rich. Note that the accuracy of the hyperspectral clay mineral maps was also validated by field sampling and associated laboratory spectral and X-Ray diffraction analyses.