From 1 - 10 / 110
  • This report was compiled and written to summarise the four-year Palaeovalley Groundwater Project which was led by Geoscience Australia from 2008 to 2012. This project was funded by the National Water Commission's Raising National Water Standards Program, and was supported through collaboration with jurisdictional governments in Western Australia, South Australia and the Northern Territory. The summary report was published under the National Water Commission's 'Waterlines' series. This document is supported by related publications such as the palaeovalley groundwater literature review, the WASANT Palaeovalley Map and associated datasets, and four stand-alone GA Records that outline the detailed work undertaken at several palaeovalley demonstration sites in WA, SA and the NT. Palaeovalley aquifers are relied upon in outback Australia by many groundwater users and help underpin the economic, social and environmental fabric of this vast region. ‘Water for Australia’s arid zone – Identifying and assessing Australia’s palaeovalley groundwater resources’ (the Palaeovalley Groundwater Project) investigated palaeovalleys across arid and semi-arid parts of Western Australia (WA), South Australia (SA) and the Northern Territory (NT). The project aimed to (a) generate new information about palaeovalley aquifers, (b) improve our understanding of palaeovalley groundwater resources, and (c) evaluate methods available to identify and assess these systems.

  • This McArthur Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The McArthur Basin, located in the north-east of the Northern Territory, is a Paleoproterozoic to Mesoproterozoic geological formation containing relatively undisturbed siliclastic and carbonate rocks, as well as minor volcanic and intrusive rocks. These sediments were primarily deposited in shallow marine environments, with some lacustrine and fluvial influences. The basin's thickness is estimated to be around 10,000 m to 12,000 m, potentially reaching 15,000 m in certain areas. It is known for hosting elements of at least two Proterozoic petroleum systems, making it a target for petroleum exploration, especially in the Beetaloo Sub-basin. Researchers have divided the McArthur Basin into five depositional packages based on similarities in age, lithofacies composition, stratigraphic position, and basin-fill geometry. These packages, listed from oldest to youngest, are the Wilton, Favenc, Glyde, Goyder, and Redback packages. The McArthur Basin is part of the broader Proterozoic basin system on the North Australian Craton, bounded by various inliers and extending under sedimentary cover in areas like the Arafura, Georgina, and Carpentaria basins. It is divided into northern and southern sections by the Urapunga Fault Zone, with significant structural features being the Walker Fault Zone in the north and the Batten Fault Zone in the south. The basin's southeastern extension connects with the Isa Superbasin in Queensland, forming the world's largest lead-zinc province. Overall, the McArthur Basin is an essential geological formation with potential petroleum resources, and its division into distinct packages helps in understanding its complex stratigraphy and geological history. Additionally, its connection with other basins contributes to a broader understanding of the region's geological evolution and resource potential.

  • <div>In response to the acquisition of national-scale airborne electromagnetic surveys and the development of a national depth estimates database, a new workflow has been established to interpret airborne electromagnetic conductivity sections. This workflow allows for high quantities of high quality interpretation-specific metadata to be attributed to each interpretation line or point. The conductivity sections are interpreted in 2D space, and are registered in 3D space using code developed at Geoscience Australia. This code also verifies stratigraphic unit information against the national Australian Stratigraphic Units Database, and extracts interpretation geometry and geological data, such as depth estimates compiled in the Estimates of Geological and Geophysical Surfaces database. Interpretations made using this workflow are spatially consistent and contain large amounts of useful stratigraphic unit information. These interpretations are made freely-accessible as 1) text files and 3D objects through an electronic catalogue, 2) as point data through a point database accessible via a data portal, and 3) available for 3D visualisation and interrogation through a 3D data portal. These precompetitive data support the construction of national 3D geological architecture models, including cover and basement surface models, and resource prospectivity models. These models are in turn used to inform academia, industry and governments on decision-making, land use, environmental management, hazard mapping, and resource exploration.</div>

  • NDI Carrara 1 is a deep stratigraphic drill hole completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-Basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) recently acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1100 m of Proterozoic sedimentary rocks uncomformably overlain by 630 m of Cambrian Georgina Basin carbonates. A comprehensive geochemical program designed to provide information about the region’s resource potential was carried out on samples collected at up to 4 meter intervals. This report presents part 1 of the data from Rock-Eval pyrolysis analyses undertaken by Geoscience Australia on selected rock samples to establish their total organic carbon content, hydrocarbon-generating potential and thermal maturity.

  • <div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources.&nbsp;&nbsp;By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential.&nbsp;</div><div><br></div><div>The Paleo to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin located in northwestern Northern Territory and northeastern Western Australia. The Birrindudu Basin is a region of focus for the second phase of the EFTF program (2020–2024) as it contains strata of similar age to the prospective McArthur Basin, South Nicholson region and Mount Isa Province, but remains comparatively poorly understood.&nbsp;Geoscience Australia, in collaboration with the Northern Territory Geological Survey is acquiring isotopic, geochronological, geochemical and geomechanical data from drillholes intersecting the Birrindudu Basin as part of phase two of EFTF. </div><div><br></div><div>This report presents results on selected rock samples from the Birrindudu Basin, conducted by the Mawson Analytical Spectrometry Services, University of Adelaide, under contract to Geoscience Australia. These results include:</div><div>1.&nbsp;&nbsp;&nbsp;&nbsp;Carbon (δ13C), oxygen (δ18O) and strontium (87Sr/86Sr) isotopes on carbonate-bearing samples, and</div><div>2.&nbsp;&nbsp;&nbsp;&nbsp;Trace element data on the leachates prepared for 87Sr/86Sr ratio analyses.</div>

  • <div>This report presents key results from the Upper Darling River Floodplain groundwater study conducted as part of the Exploring for the Future (EFTF) program in north-western New South Wales. The Australian Government funded EFTF program aimed to improve understanding of potential mineral, energy, and groundwater resources in priority areas for each resource.</div><div><br></div><div>The Upper Darling River Floodplain study area is located in semi-arid zone northwest New South Wales is characterised by communities facing critical water shortages and water quality issues, along with ecosystem degradation. As such, there is an imperative to improve our understanding of groundwater systems including the processes of inter-aquifer and groundwater-surface water connectivity. The key interest is in the fresh and saline groundwater systems within alluvium deposited by the Darling River (the Darling alluvium - DA) which comprises sediment sequences from 30 m to 140 m thick beneath the present-day floodplain.</div><div><br></div><div>The study acquired airborne, surface and borehole geophysical data plus hydrochemical data, and compiled geological, hydrometric, and remote sensing datasets. The integration of airborne electromagnetic (AEM) data with supporting datasets including surface and borehole magnetic resonance, borehole induction conductivity and gamma, and hydrochemistry data has allowed unprecedented, high resolution delineation of interpreted low salinity groundwater resources within the alluvium and highly saline aquifers which pose salination risk to both the river and fresher groundwater. Improved delineation of the palaeovalley architecture using AEM, seismic, and borehole datasets has permitted interpretation of the bedrock topography forming the base of the palaeovalley, and which has influenced sediment deposition and the present-day groundwater system pathways and gradients.</div><div><br></div><div>The integrated assessment demonstrates that the alluvial groundwater systems within the study area can be sub-divided on the basis of groundwater system characteristics relevant to water resource availability and management. Broadly, the northern part of the study area has low permeability stratigraphy underlying the river and a generally upward groundwater gradient resulting in limited zone of freshwater ingress into the alluvium around the river. A bedrock high south of Bourke partially restricts groundwater flow and forces saline groundwater from deeper in the alluvium to the surface in the vicinity of the Upper Darling salt interception scheme. From approximately Tilpa to Wilcannia, sufficiently permeable stratigraphy in hydraulic connection with the river and a negligible upward groundwater gradient allows recharge from the river, creating significant freshwater zones around the river within the alluvium.</div><div><br></div><div>Hydrometric and hydrochemical tracer data demonstrate that the alluvial groundwater systems are highly coupled with the rivers. Results support the conceptual understanding that bank-exchange processes and overbank floods associated with higher river flows are the primary recharge mechanism for the lower salinity groundwater within the alluvium. When river levels drop, tracers indicative of groundwater discharge confirm that groundwater contributes significant baseflow to the river. Analysis of groundwater levels and surface water discharge indicates that the previously identified declining trends in river discharge are likely to produce the significant decline in groundwater pressure observed across the unconfined aquifer within the alluvium. Improved quantification and prediction of groundwater-surface water connectivity, water level and flux is considered a high priority for both the Darling River and the wider Murray–Darling Basin. This information will assist in understanding and managing water resource availability in these highly connected systems, and enhance knowledge regarding cultural values and groundwater dependent ecosystems (GDEs).</div><div><br></div><div>This study identifies several aquifers containing groundwater of potentially suitable quality for a range of applications in the south of the study area between Wilcannia and Tilpa and assessed the geological and hydrological processes controlling their distribution and occurrence. Potential risks associated with the use of this groundwater, such as unsustainable extraction, impacts on GDEs, and saline intrusion into aquifers or the river, are outside the scope of this work and have not been quantified.</div>

  • <div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. This work contributes to building a better understanding of the Australian continent, whilst giving the Australian public the tools they need to help them make informed decisions in their areas of interest.</div><div><br></div><div>As part of the Australia's Resources Framework Project, in the Exploring for the Future Program, Geoscience Australia and CSIRO undertook a magnetic source depth study across four areas, with the objectives of generating cover model constraints from magnetic modelling to expand national coverage, and to improve our subsurface understanding of these areas. During this study, 2005 magnetic estimates of depth to the top of magnetization were generated, with solutions derived using a consistent methodology (targeted magnetic inversion modelling, or TMIM; also known as ‘sweet-spot’ modelling). The methodology for these estimates are detailed in a summary report by Foss et al (2024), and is available for download through Geoscience Australia’s enterprise catalogue (https://pid.geoscience.gov.au/dataset/ga/149239). </div><div><br></div><div>The new points were generated over four areas: 1) the western part of Tasmania that is the southernmost extension of the Darling-Curnamona-Delamerian (DCD) project area; 2) northeastern Queensland; 3) the Officer Basin area of western South Australia and southeastern West Australia; and 4) the Eastern Resources Corridor (ERC), covering eastern South Australia, southwest Queensland, western New South Wales and western Victoria. These depth estimates have been released, together with a summary report detailing the data and methodology used to generate the results, through Geoscience Australia's product catalogue (ecat) at https://pid.geoscience.gov.au/dataset/ga/149239.</div><div><br></div><div>This supplementary data release contains the chronostratigraphic attribution of the new TMIM magnetic depth estimates, which range in depth from at surface to 13,294 m below ground. To ensure that the interpretations took into account the local geological features, the magnetic depth estimates were integrated and interpreted with other geological and geophysical datasets, including borehole stratigraphic logs, potential fields images, surface and solid geology maps, and airborne electromagnetic interpretations (where available). </div><div><br></div><div>Each depth-solution is interpretively ascribed to either a chronostratigraphic boundary with the stratigraphic units above and below the depth estimate, or the stratigraphic unit that the depth estimate occurs within, populated from the Australian Stratigraphic Units Database (ASUD). Stratigraphic attribution adds value and informs users of the depth to certain stratigraphic units in their areas of interest. Each solution is accompanied by confidence estimates. The depth estimate points are formatted for compliance with Geoscience Australia’s (GA) Estimates of Geological and Geophysical Surfaces (EGGS) database, the national repository for standardised depth estimate points. </div><div><br></div><div>Results from these interpretations provided some support to stratigraphic drillhole targeting, as part of the Delamerian Margins NSW National Drilling Initiative campaign, a collaboration between GA’s EFTF program, the MinEx CRC National Drilling Initiative and the Geological Survey of New South Wales. The magnetic depth-estimate solutions produced within this study provide important depth constraints in data-poor areas. These data help to construct a better understanding of the 3D geometry of the Australian continent and aid in cover thickness modelling activities. The availability of the depth-estimate solutions via the EGGS database through Geoscience Australia’s Portal creates enduring value to the public.</div>

  • This report presents palynological data compiled and analysed as part of the National Groundwater Systems (NGS) Project. NGS is part of Exploring for the Future (EFTF)—an eight year, $225 million Australian Government funded geoscience data and information acquisition program focused on better understanding the potential mineral, energy and groundwater resources across Australia. This study builds on previous work (Hannaford et al., 2022) undertaken as part of the ‘Assessing the Status of Groundwater in the Great Artesian Basin’ project, commissioned by the Australian Government through the National Water Infrastructure Fund – Expansion. The study undertaken by MGPalaeo, in collaboration with Geoscience Australia, examined an additional 688 boreholes across the GAB and compiled 149 new palynological summary sheets having Jurassic‒Cretaceous succession, with reviewed palynology data (down to total depth). The combined borehole palynological data examined from this study and the previous GAB work (Hannaford et al., 2022) is compiled in Appendix B4. The combined dataset totals 1,394 boreholes examined and 652 with palynology in the stratigraphic interval of interest, 102 of these boreholes contained Cenozoic palynology relevant to the Lake Eyre Basin. This information has been used to revise stratigraphic correlations across the GAB (Norton & Rollet, 2022 and 2023). Initial review of the stratigraphy in the Lake Eyre Basin (LEB) compiled existing palynology from outcrop, mineral and petroleum boreholes. An additional 28 boreholes in the Upper Darling Floodplain region were examined, 16 of which contained relevant palynology. The main palynological data infill in the GAB and LEB region during this follow-up study focused on: 1. Collecting, processing and analysing new biostratigraphic data on 149 key boreholes particularly across the Eromanga and Surat basins boundary. The study focussed on integrating data in New South Wales from the southern Surat Basin and central Eromanga Basin. 2. Further palynological data infill and palynological analysis on 15 samples from 7 boreholes in the western Eromanga Basin to assess difficulties in correlating the stratigraphy across the Algebuckina Sandstone. 3. Compiling existing analyses and update any historical palynological data in the Lake Eyre Basin to reflect the latest zonation scheme developed in this study. The new palynological data combined with new zircon data from other studies in the Carpentaria and Surat basins (Foley et al., 2020, 2021, 2022; La Croix et al., 2022, respectively) provides information on the tie to the geological timescale and help refine the chronostratigraphic chart that summarises stratigraphic correlations across the Carpentaria, Surat and Eromanga basins of Hannaford et al. (2022). All boreholes were examined outside of the Cooper and Bowen basins boundaries with selected boreholes around transects defined for stratigraphic correlation review through the Cooper and Bowen basin outlines (Norton & Rollet, 2022 and 2023). As a result, most of the remaining unreviewed palynological data lies within the Cooper and Bowen basins. The results of the palynology data infill in the western Eromanga Basin, in South Australia and Northern Territory, show that the Algebuckina Sandstone section is dominated by clean sandstone and so the cuttings samples were also dominated by sand. Although attempts were made to concentrate the shale from the cuttings in the thicker shale mid formation, this did not yield results, due to the amount of caved Cretaceous material. An initial assessment of the Lake Eyre Basin palynological data and zonation scheme was undertaken using information derived from water, mineral and petroleum boreholes. This provides an initial state of knowledge for the Lake Eyre Basin that can be built on in the future. Recommendations are provided for further studies to build a better understanding of the stratigraphy in the Great Artesian and Lake Eyre basins.

  • The Source Rock and Fluids Atlas delivery and publication services provide up-to-date information on petroleum (organic) geochemical and geological data from Geoscience Australia's Organic Geochemistry Database (ORGCHEM). The sample data provides the spatial distribution of petroleum source rocks and their derived fluids (natural gas and crude oil) from boreholes and field sites in onshore and offshore Australian basins. The services provide characterisation of source rocks through the visualisation of Pyrolysis, Organic Petrology (Maceral Groups, Maceral Reflectance) and Organoclast Maturity data. The services also provide molecular and isotopic characterisation of source rocks and petroleum through the visualisation of Bulk, Whole Oil GC, Gas, Compound-Specific Isotopic Analyses (CSIA) and Gas Chromatography-Mass Spectrometry (GCMS) data tables. Interpretation of these data enables the characterisation of petroleum source rocks and identification of their derived petroleum fluids that comprise two key elements of petroleum systems analysis. The composition of petroleum determines whether or not it can be an economic commodity and if other processes (e.g. CO2 removal and sequestration; cryogenic liquefaction of LNG) are required for development.

  • This Maryborough-Nambour Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Maryborough Basin is a half-graben intracratonic sag basin mainly filled with Early Cretaceous rocks, overlain by up to 100 m of Cenozoic sediments. It adjoins the older Nambour Basin to the south, comprising Triassic to Jurassic rocks. The boundary between the basins has shifted due to changes in sedimentary unit classifications, with the Cretaceous units now restricted to the Maryborough Basin and Jurassic and older units assigned to the Nambour Basin. Both basins are bounded to the west and unconformably overlies older Permian and Triassic rocks in the Gympie Province and Wandilla Province of the New England Orogen. In the south of the Nambour Basin, it partly overlaps with the Triassic Ipswich Basin. The Nambour Basin in the south is primarily composed of the Nambour Formation, with interbedded conglomerate, sandstone, siltstone, shale, and minor coal. Overlying this is the Landsborough Sandstone, a unit with continental, fluviatile sediments and a thickness of up to 450 m. In the north, the Duckinwilla Group contains the Myrtle Creek Sandstone and the Tiaro Coal Measures, which were formerly considered part of the Maryborough Basin but are now associated with the northern Nambour Basin. In contrast, the Maryborough Basin consists of three main Cretaceous units and an upper Cenozoic unit. The Grahams Creek Formation is the deepest, featuring terrestrial volcanic rocks, volcaniclastic sedimentary rocks, and minor pyroclastic rocks. The overlying Maryborough Formation was deposited in a continental environment with subsequent marine incursion and includes mudstone, siltstone, minor sandstone, limestone, conglomerate, and tuff. The upper Cretaceous unit is the Burrum Coal Measures, comprising interbedded sedimentary rocks deposited in fluvial to deltaic environments. The uppermost unit, the Eocene to Miocene Elliott Formation, includes sandstone, siltstone, conglomerate, and shale deposited in fluvial to deltaic environments. Cenozoic sediments overlying the Elliott Formation consist of Quaternary alluvium, coastal deposits, and sand islands like Fraser Island, influenced by eustatic sea level variations. Volcanic deposits and freshwater sediments also occur in some areas. Adjacent basins, such as the Clarence-Moreton Basin and Capricorn Basin, have stratigraphic correlations with the Maryborough Basin. The Oxley Basin lies to the south, overlying the Ipswich Basin. In summary, the Maryborough Basin and the older Nambour Basin exhibit distinct geological characteristics, with varying rock formations, ages, and sedimentary features, contributing to the diverse landscape of the region.