From 1 - 10 / 51
  • Increasingly, society understands that decarbonising the global economy will depend on critical minerals and mining. This is leading to greater scrutiny of where the necessary commodities will be coming from, and whether they will be produced responsibly. Australia’s vibrant world-class minerals industry, which has evolved over a long history of mining diverse commodities, is attracting attention in this regard. Given the major roles coal plays in Australia’s minerals industry and national economy, the global transition to low carbon energy will result in major challenges that need to be addressed. The loss of coal can be partly compensated by an increasing focus on the critical materials needed for clean energy technologies such as wind turbines, solar panels, and storage batteries. New mines, mineral processing advances and recycling will be needed to meet rapidly increasing demand for these commodities, and the recovery of critical metals from past, present and future mining wastes is also likely to be important. After outlining critical mineral supply issues, this report provides contextual information on types of mining and how mine wastes and rehabilitation have been, and are being, managed in Australia. After summarising the implications of closing coal mines, it focusses on growing the critical metals sector, with emphasis on the potential recovery of these increasingly valuable metals from mine wastes.

  • <p>The Exploring for the Future program is an initiative by the Australian Government dedicated to boosting investment in resource exploration in Australia. The four-year program led by Geoscience Australia focusses on northern Australia and parts of South Australia to gather new data and information about the potential mineral, energy and groundwater resources concealed beneath the surface. As part of the Exploring for the Future program, this study aims to improve our understanding of the petroleum resource potential of northern Australia. As a component of this project, collaboration between the Onshore Energy Systems Branch, Geoscience Australia and the Northern Territory Geological Survey (NTGS) is designed to produce pre-competitive information to assist with the evaluation of the petroleum prospectivity of onshore Northern Territory basins. <p>Proterozoic basins of northern Australia including the McArthur Basin, the Isa Superbasin and the Isa Superbasin have the potential to host conventional oil and gas, in addition to unconventional shale gas and oil plays (Muir et al., 1980; Munson, 2014; Revie, 2016; Revie, 2017; Gorton & Troup, 2018). To date, work on the prospective petroleum systems in the McArthur Basin has focused principally on source rocks within the McArthur and Roper groups in the southern parts of the basin. However due to limited data availability, the spatial variability in source rock quality, type and thermal maturity remains poorly constrained across the region. In the South Nicholson region of Queensland and the Northern Territory, data from the Paleoproterozoic Isa Superbasin and the Mesoproterozoic South Nicholson Basin is extremely limited and a large proportion of the available data is old and of poor quality. To more comprehensively characterise these organic rich source rocks, higher resolution coverages of pre-competitive geochemical data is required (Gorton & Troup, 2018; Jarrett et al. 2018). <p>This data release contains the total organic carbon (TOC) content and Rock-Eval pyrolysis data of 314 samples selected from nine drill cores from the McArthur Basin, South Nicholson Basin and Isa Superbasin that are housed in the Northern Territory Geological Survey’s Darwin core repository. The wells include Glyde 1, Lamont Pass 3 (McArthur Basin), Brunette Downs 1, CRDD001, NTGS 00/1, NTGS 01/1, NTGS 02/1 (South Nicholson Basin), in addition to ND1 and ND2 (Isa Superbasin). This data was generated at the Isotope and Organic Geochemistry Laboratory at Geoscience Australia as part of the Exploring for the Future program. The results show that the McArthur Basin samples analysed contain source rocks with poor to fair oil and gas generative potential with variable thermal maturity from immature to early oil mature. The Isa Superbasin samples analysed have poor to good gas generative potential and the South Nicholson samples analysed have poor to excellent gas generative potential. Samples from the Walford Dolostone and the Mullera Formation are overmature and petroleum potential cannot be assessed from the results of this study. This data release provides additional information that can be used to characterise the organic richness, kerogen type and thermal maturity of source rocks in the Teena Dolostone, Barney Creek Formation and Lynott Formation of the McArthur Basin, the Walford Dolostone and Mount Les Siltstone of the Isa Superbasin, in addition to the Constance Sandstone and Mullera Formation of the South Nicholson Basin. This data is provided in preparation for future work to generate statistics quantifying the spatial distribution, quantity and quality of source rocks, providing important insights into the hydrocarbon prospectivity of northern Australian basins

  • Exploring for the Future was a $100.5 million initiative by the Australian Government dedicated to boosting investment in resource exploration in Australia. The four-year program (2016-2020) focused on northern Australia and parts of South Australia. The under-explored northern Australian region offers enormous potential for industry development and is advantageously located close to major global markets. Geoscience Australia's leading scientists used and developed new innovative techniques to gather new scientific data and information, on an unprecedented scale, about the potential mineral, energy and groundwater resources concealed beneath the surface. This work was undertaken in greenfield areas, where the Exploring for the Future program had the greatest impact. This dataset depicts the geographical extents of the various projects undertaken as part of this program, with an indicative total spend for each

  • <div>The Gas Chromatography-Mass Spectrometry (GC-MS) biomarker database table contains publicly available results from Geoscience Australia's organic geochemistry (ORGCHEM) schema and supporting oracle databases for the molecular (biomarker) compositions of source rock extracts and petroleum liquids (e.g., condensate, crude oil, bitumen) sampled from boreholes and field sites. These analyses are undertaken by various laboratories in service and exploration companies, Australian government institutions and universities using either gas chromatography-mass spectrometry (GC-MS) or gas chromatography-mass spectrometry-mass spectrometry (GC-MS-MS). Data includes the borehole or field site location, sample depth, shows and tests, stratigraphy, analytical methods, other relevant metadata, and the molecular composition of aliphatic hydrocarbons, aromatic hydrocarbons and heterocyclic compounds, which contain either nitrogen, oxygen or sulfur.</div><div><br></div><div>These data provide information about the molecular composition of the source rock and its generated petroleum, enabling the determination of the type of organic matter and depositional environment of the source rock and its thermal maturity. Interpretation of these data enable the determination of oil-source and oil-oil correlations, migration pathways, and any secondary alteration of the generated fluids. This information is useful for mapping total petroleum systems, and the assessment of sediment-hosted resources. Some data are generated in Geoscience Australia’s laboratory and released in Geoscience Australia records. Data are also collated from destructive analysis reports (DARs), well completion reports (WCRs), and literature. The biomarker data for crude oils and source rocks are delivered in the Petroleum and Rock Composition – Biomarker web services on the Geoscience Australia Data Discovery Portal at https://portal.ga.gov.au which will be periodically updated.</div>

  • <div>The noble gas database table contains publicly available results from Geoscience Australia's organic geochemistry (ORGCHEM) schema and supporting oracle databases for molecular and noble gas isotopic analyses on natural gases sampled from boreholes and fluid inclusion gases from rocks sampled in boreholes and field sites. Data includes the borehole or field site location, sample depths, shows and tests, stratigraphy, analytical methods, other relevant metadata, and the molecular and noble gas isotopic compositions for the natural gas samples. The molecular data are presented in mole percent (mol%) and cubic centimetres (at Standard Pressure and Temperature) per cubic centimetre (ccSTP/cc). The noble gas isotopic values that can be measured are; Helium (He, <sup>3</sup>He, <sup>4</sup>He), Neon (Ne, <sup>20</sup>Ne, <sup>21</sup>Ne, <sup>22</sup>Ne), Argon (Ar, <sup>36</sup>Ar, <sup>38</sup>Ar, <sup>40</sup>Ar), Krypton (Kr, <sup>78</sup>Kr, <sup>80</sup>Kr, <sup>82<</sup>Kr, <sup>83</sup>Kr, <sup>84</sup>Kr, <sup>86</sup>Kr) and Xenon (Xe, <sup>124</sup>Xe, <sup>126</sup>Xe, <sup>128</sup>Xe, <sup>129</sup>Xe, <sup>130</sup>Xe, <sup>131</sup>Xe, <sup>132</sup>Xe, <sup>134</sup>Xe, <sup>136</sup>Xe) which are presented in cubic micrometres per cubic centimetre (mcc/cc), cubic nanometres per cubic centimetre (ncc/cc) and cubic picometres per cubic centimetre (pcc/cc). Acquisition of the molecular compounds are by gas chromatography (GC) and the isotopic ratios by mass spectrometry (MS). Compound concentrations that are below the detection limit (BDL) are reported as the value -99999.</div><div><br></div><div>These data provide source information about individual compounds in natural gases and can elucidate fluid migration pathways, irrespective of microbial activity, chemical reactions and changes in oxygen fugacity, which are useful in basin analysis with derived information being used to support Australian exploration for energy resources and helium. These data are collated from Geoscience Australia records and well completion reports. The noble gas data for natural gases and fluid inclusion gases are delivered in the Noble Gas Isotopes web services on the Geoscience Australia Data Discovery Portal at https://portal.ga.gov.au which will be periodically updated.</div><div><br></div><div><br></div>

  • This web service delivers data from an aggregation of sources, including several Geoscience Australia databases (provinces (PROVS), mineral resources (OZMIN), energy systems (AERA, ENERGY_SYSTEMS) and water (HYDROGEOLOGY). Information is grouped based on a modified version of the Australian Bureau of Statistics (ABS) 2021 Indigenous Regions (IREG). Data covers population centres, top industries, a regional summary, groundwater resources and uses, energy production and potential across six sources and two energy storage options. Mineral production and potential covers 36 commodities that are grouped into 13 groups.

  • <div>The interpretation of AusAEM airborne electromagnetic (AEM) survey conductivity sections in the Canning Basin region delineates the geo-electrical features that correspond to major chronostratigraphic boundaries, and captures detailed stratigraphic information associated with these boundaries. This interpretation forms part of an assessment of the underground hydrogen storage potential of salt features in the Canning Basin region based on integration and interpretation of AEM and other geological and geophysical datasets. A main aim of this work was to interpret the AEM to develop a regional understanding of the near-surface stratigraphy and structural geology. This regional geological framework was complimented by the identification and assessment of possible near-surface salt-related structures, as underground salt bodies have been identified as potential underground hydrogen storage sites. This study interpreted over 20,000 line kilometres of 20&nbsp;km nominally line-spaced AusAEM conductivity sections, covering an area approximately 450,000 km2 to a depth of approximately 500&nbsp;m in northwest Western Australia. These conductivity sections were integrated and interpreted with other geological and geophysical datasets, such as boreholes, potential fields, surface and basement geology maps, and seismic interpretations. This interpretation produced approximately 110,000 depth estimate points or 4,000 3D line segments, each attributed with high-quality geometric, stratigraphic, and ancillary data. The depth estimate points are formatted for Geoscience Australia’s Estimates of Geological and Geophysical Surfaces database, the national repository for formatted depth estimate points. Despite these interpretations being collected to support exploration of salt features for hydrogen storage, they are also intended for use in a wide range of other disciplines, such as mineral, energy and groundwater resource exploration, environmental management, subsurface mapping, tectonic evolution studies, and cover thickness, prospectivity, and economic modelling. Therefore, these interpretations will benefit government, industry and academia interested in the geology of the Canning Basin region.</div>

  • <div>Identifying potential basin areas for future Geological Storage of CO2 (GSC) exploration is essential to support Australia’s transition to a net zero emissions energy future. Geoscience Australia’s AFER Project has completed a play-based assessment of the GSC potential in the Pedirka and western Eromanga basins using regionally extensive aquifers containing saline to slightly brackish formation waters. There are currently no significant anthropogenic CO2 sources or associated storage projects in the assessment area. Understanding the area’s GSC potential does, however, assist in providing options for addressing CCS requirements in the central Australian region, including any future opportunities to remove anthropogenic CO2 using Direct Air Capture and Storage technologies. </div><div><br></div><div>The AFER Project’s assessments are underpinned by new geological insights into the basins and a supporting upscaled 3D geological model. A play-based common risk segment mapping approach has been applied to five potential storage (play) intervals to delineate basin areas with relatively high prospectivity based on four geological risk elements: injectivity, storage effectiveness, containment, and structural complexity. Results from this qualitative component of the assessment highlights a potentially prospective area for future GSC exploration extending across the Northern Territory, South Australia and Queensland. The most prospective interval on a geological probability of success basis is the Namur-Murta play interval. </div><div><br></div><div>Results from the qualitative GSC assessment have been used as a screening tool to delineate areas for quantitative modelling of the range of Estimated Ultimate Storage (EUS) volumes using deterministic and probabilistic methodologies. EUS volumes have been estimated in two model areas representing geological end members in storage interval heterogeneity and potentially prospective areas outside of the extents of current national parks. The EUS potential is high (10’s of gigatonnes) in the two model areas using both deterministic and probabilistic workflows, as expected for a regional assessment using very large pore volumes. Applying a geological probability of success based on injectivity and structural and stratigraphic containment reduces the volumes in the two model areas to a risked best estimate EUS of 13 Gt in the eastern area and a risked best estimate EUS of 2 Gt in the western area. Results from the quantitative assessment suggest that both model areas can support multiple industrial-scale CCS projects injecting 50 Mt CO2 over a 20-year period. However, heterogeneous reservoirs that extend over the eastern assessment area are likely to have greater storage efficiencies and an associated smaller project footprint of 29 km2 using three CO2 injection wells. Relatively homogenous reservoirs elsewhere in the assessment area have lower storage efficiencies due to a lack of intraformational seals within the Algebuckina Sandstone and have an associated larger project area of 49 km2 using three CO2 injection wells. Pressure management requirements are likely to be minimal in both model areas due to the thick and open nature of reservoirs. However, water production rates of up to 16,500 m3/day may be required where local lateral barriers to pressure dissipation occur. &nbsp;&nbsp;&nbsp;</div><div><br></div><div>Results from the AFER Project's GSC assessment demonstrate the value of applying a play-based exploration workflow for a regional-scale energy resource assessment. Estimating the geological probability of success to the presence and repeatability of four mappable risk elements associated with GSC resources allows both relative prospectivity maps and risked EUS volumes to be generated. Prospectivity maps and EUS volumes can in turn be readily updated as new geological data are collected to infill data and knowledge gaps. Geoscience Australia is building a national inventory of GSC resources using this play-based exploration approach, with qualitative assessments now completed under the EFTF and TEGI programs in seven basin areas from central and eastern Australia.&nbsp;</div><div><br></div>

  • <div>The bulk source rock database table contains publicly available results from Geoscience Australia's organic geochemistry (ORGCHEM) schema and supporting oracle databases for the bulk properties of sedimentary rocks that contain organic matter and fluid inclusions taken from boreholes and field sites. The analyses are performed by various laboratories in service and exploration companies, Australian government institutions, and universities, using a range of instruments. Sedimentary rocks that contain organic matter are typically referred to as source rocks (e.g., organic-rich shale, oil shale and coal) and the organic matter within the rock matrix that is insoluble in organic solvents is named kerogen. Data includes the borehole or field site location, sample depth, stratigraphy, analytical methods, other relevant metadata, and various data types including; elemental composition, and the stable isotopes of carbon, hydrogen, nitrogen, and sulfur. Results are also included from methods that separate the extractable organic matter (EOM) from rocks into bulk components, such as the quantification of saturated hydrocarbon, aromatic hydrocarbon, resin and asphaltene (SARA) fractions according to their polarity. The stable carbon (<sup>13</sup>C/<sup>12</sup>C) and hydrogen (<sup>2</sup>H/<sup>1</sup>H) isotopic ratios of the EOM and derivative hydrocarbon fractions, as well as fluid inclusion oils, are presented in delta notation (i.e., &delta;<sup>13</sup>C and &delta;<sup>2</sup>H) in parts per mil (‰) relative to the Vienna Peedee Belemnite (VPDB) standard.</div><div><br></div><div>These data are used to determine the molecular and isotopic compositions of organic matter within rocks and associated fluid inclusions and evaluate the potential for hydrocarbon generation in a basin. Some data are generated in Geoscience Australia’s laboratory and released in Geoscience Australia records. Data are also collated from destructive analysis reports (DARs), well completion reports (WCRs), and literature. The bulk data for sedimentary rocks are delivered in the Source Rock Bulk Properties and Stable Isotopes web services on the Geoscience Australia Data Discovery Portal at https://portal.ga.gov.au which will be periodically updated.</div>

  • Although the Canning Basin has yielded minor gas and oil within conventional and unconventional reservoirs, the relatively limited geological data available in this under-explored basin hinder a thorough assessment of its hydrocarbon potential. Knowledge of the Paleozoic Larapintine Petroleum Supersystem is restricted by the scarcity of samples, especially recovered natural gases, which are limited to those collected from recent exploration successes in Ordovician and Permo-Carboniferous successions along the margins of the Fitzroy Trough and Broome Platform. To address this shortcoming, gases trapped within fluid inclusions were analysed from 121 Ordovician to Permian rock samples (encompassing cores, sidewall cores and cuttings) from 70 exploration wells with elevated mud gas readings. The molecular and carbon isotopic compositions of these gases have been integrated with gas compositions derived from open-file sources and recovered gases analysed by Geoscience Australia. Fluid inclusion C1–C5 hydrocarbon gases record a snapshot of the hydrocarbon generation history. Where fluid inclusion gases and recovered gases show similar carbon isotopes, a simple filling history is likely; where they differ, a multicharge history is evident. Since some fluid inclusion gases fall outside the carbon isotopic range of recovered gases, previously unidentified gas systems may have operated in the Canning Basin. Interestingly, the carbon isotopes of the fluid-inclusion heavy wet gases converge with the carbon isotopes of the light oil liquids, indicating potential for gas–oil correlation. A regional geochemical database incorporating these analyses underpins our re-evaluation of gas systems and gas–gas correlations across the basin. <b>Citation:</b> Boreham, C.J., Edwards, D.S., Sohn, J.H., Palatty, P., Chen, J.H. and Mory, A.J., 2020. Gas systems in the onshore Canning Basin as revealed by gas trapped in fluid inclusions. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.