From 1 - 10 / 33
  • The Cooper Basin is an upper Carboniferous-Middle Triassic intracratonic basin in northeastern South Australia and southwestern Queensland (Gravestock et al., 1998; Draper, 2002; McKellar, 2013; Carr et al., 2016; Hall et al., 2015a). The basin is Australia's premier onshore hydrocarbon producing province and is nationally significant in providing gas to the eastern Australian gas market. The basin also hosts a range of unconventional gas play types within the Permian Gidgealpa Group, including basin-centred gas and tight gas accumulations, deep dry coal gas associated with the Patchawarra and Toolachee formations, the Murteree and Roseneath shale gas plays and deep coal seam gas in the Weena Trough (e.g. Goldstein et al., 2012; Menpes et al., 2013; Greenstreet, 2015). The principal source rocks for these plays are the Permian coals and coaly shales of the Gidgealpa Group (Boreham & Hill, 1998; Deighton et al., 2003; Hall et al., 2016a). Mapping the petroleum generation potential of these source rocks is critical for understanding the hydrocarbon prospectivity of the basin. Geoscience Australia, in conjunction with the Department of State Development, South Australia and the Geological Survey of Queensland, have recently released a series of studies reviewing the distribution, type, quality, maturity and generation potential of the Cooper Basin source rocks (Hall et al., 2015a; 2016a; 2016b, 2016c; 2016d). Petroleum systems models, incorporating new Cooper Basin kinetics (Mahlstedt et al., 2015), highlight the variability in burial, thermal and hydrocarbon generation histories for each source rock across the basin (Hall et al., 2016a). A Geoscience Australia record 'Cooper Basin Petroleum Systems Analysis: Regional Hydrocarbon Prospectivity of the Cooper Basin, Part 3' providing full documentation of the model input data, workflow and results is currently in press. This work provides important insights into the hydrocarbon prospectivity of the basin (Hall et al., 2015b; Kuske et al., 2015). This product contains the working Cooper Basin Trinity-Genesis-KinEx petroleum systems model used to generate the results presented in these studies. This includes maps describing thickness, TOC and original HI for the following Permian source intervals: Toolachee Fm coals and coaly shales Daralingie Fm coals and coaly shales Roseneath Shale Epsilon Fm coals and coaly shales Murteree Shale Patchawarra Fm coals and coaly shales This model is designed for use as a regional scale hydrocarbon prospectivity screening tool. Model resolution is not high enough for this product to be used for sub-basin to prospect scale analysis, without further modification. However, the model provides a regional framework, into which more detailed prospect scale data may be embedded. The systematic workflow applied demonstrates the importance of integrated geochemical and petroleum systems modelling studies as a predictive tool for understanding the petroleum resource potential of Australia's sedimentary basins.

  • A comprehensive compilation of rock, regolith and groundwater geochemistry across the Curnamona Province and overlying basins. This product is part of the Curnamona Geochemistry module of GA's Exploring for the Future program, which is seeking to understand geochemical baselines within the Curnamona Province to support mineral exploration under cover. Data is sourced from GA, CSIRO and state databases, and run through a quality control process to address common database issues (such as unit errors). The data has been separated by sample type and migrated into a standard data structure to make the data internally consistent. A central source for cleaned geochemical data in the same data format is a valuable resource for further research and exploration in the region.

  • <div>This data package provides depth and isochore maps generated in support of the energy resource assessments under the Australia’s Future Energy Resources (AFER) project. Explanatory notes are also included.</div><div><br></div><div>The AFER project is part of Geoscience Australia’s Exploring for the Future (EFTF) Program—an eight year, $225 million Australian Government funded geoscience data and precompetitive information acquisition program to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, Geoscience Australia is building a national picture of Australia’s geology and resource potential. This will help support a strong economy, resilient society and sustainable environment for the benefit of all Australians. The EFTF program is supporting Australia’s transition to a low emissions economy, industry and agriculture sectors, as well as economic opportunities and social benefits for Australia’s regional and remote communities. Further details are available at http://www.ga.gov.au/eftf.</div><div><br></div><div>The depth and isochore maps are products of depth conversion and spatial mapping seismic interpretations by Szczepaniak et al. (2023) and Bradshaw et al. (2023) which interpreted 15 regional surfaces. These surfaces represent the top of play intervals being assessed for their energy resource potential (Figure 1). These seismic datasets were completed by play interval well tops by Bradshaw et al. (in prep), gross depositional environment maps, zero edge maps by Bradshaw et al. (in prep), geological outcrop data as well as additional borehole data from Geoscience Australia’s stratigraphic units database.</div><div><br></div><div>Depth and isochore mapping were undertaken in two to interactive phases; </div><div><br></div><div>1.&nbsp;&nbsp;&nbsp;&nbsp;A Model Framework Construction Phase – In this initial phase, the seismic interpretation was depth converted and then gridded with other regional datasets. </div><div><br></div><div>2.&nbsp;&nbsp;&nbsp;&nbsp;A Model Refinement and QC Phase – This phase focused on refining the model and ensuring quality control. Isochores were generated from the depth maps created in the previous phase. Smoothing and trend modelling techniques were then applied to the isochore to provide additional geological control data in areas with limited information and to remove erroneous gridding artefacts.&nbsp;</div><div><br></div><div>The final depth maps were derived from isochores, constructing surfaces both upward and downward from the CU10_Cadna-owie surface, identified as the most data-constrained surface within the project area. This process, utilizing isochores for depth map generation, honours all the available well and zero edge data while also conforming to the original seismic interpretation.</div><div><br></div><div>This data package includes the following datasets: </div><div><br></div><div>1)&nbsp;&nbsp;&nbsp;Depth maps, grids and point datasets measured in meters below Australian Height Datum (AHD, for 15 regional surfaces (Appendix A). </div><div>2)&nbsp;&nbsp;&nbsp;Isochore maps, grids and point datasets measured in meters, representing 14 surfaces/play internals (Appendix B).</div><div>&nbsp;</div><div>These depth and isochore maps are being used to support the AFER Project’s play-based energy resource assessments in the Pedirka and western Eromanga basins, and will help to support future updates of 3D geological and hydrogeological models for the Great Artesian Basin by Geoscience Australia.</div><div><br></div>

  • This data package provides seismic interpretations that have been generated in support of the energy resource assessments under the Australia’s Future Energy Resources (AFER) project. Explanatory notes are also included. The AFER project is part of Geoscience Australia’s Exploring for the Future (EFTF) Program—an eight year, $225 million Australian Government funded geoscience data and precompetitive information acquisition program to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, Geoscience Australia is building a national picture of Australia’s geology and resource potential. This will help support a strong economy, resilient society and sustainable environment for the benefit of all Australians. The EFTF program is supporting Australia’s transition to a low emissions economy, industry and agriculture sectors, as well as economic opportunities and social benefits for Australia’s regional and remote communities. Further details are available at http://www.ga.gov.au/eftf. The seismic interpretations build on the recently published interpretations by Szczepaniak et al. (2023) by providing updated interpretations in the AFER Project area for the Top Cadna-owie (CC10) and Top Pre-Permian (ZU) horizons, as well as interpretations for 13 other horizons that define the tops of play intervals being assessed for their energy resource potential (Figure 1). Seismic interpretations for the AFER Project are constrained by play interval tops picked on well logs that have been tied to the seismic profiles using time-depth data from well completion reports. The Pedirka and Western Eromanga basins are underexplored and contain relatively sparse seismic and petroleum well data. The AFER Project has interpreted play interval tops in 41 wells, 12 seismic horizons (Top Cadna-owie and underlying horizons) on 238 seismic lines (9,340 line kilometres), and all 15 horizons on 77 recently reprocessed seismic lines (3,370 line kilometres; Figure 2). Note that it has only been possible to interpret the Top Mackunda-Winton, Top Toolebuc-Allaru and Top Wallumbilla horizons on the reprocessed seismic lines as these are the only data that provide sufficient resolution in the shallow stratigraphic section to confidently interpret seismic horizons above the Top Cadna-owie seismic marker. The seismic interpretations are provided as point data files for 15 horizons, and have been used to constrain the zero edges for gross-depositional environment maps in Bradshaw et al. (2023) and to produce depth-structure and isochore maps for each of the 14 play intervals in Iwanec et al. (2023). The data package includes the following datasets: 1) Seismic interpretation point file data in two-way-time for up to 15 horizons using newly reprocessed seismic data and a selection of publicly available seismic lines (Appendix A). 2) Geographical layers for the seismic lines used to interpret the top Cadna-owie and underlying horizons (Cadnaowie_to_TopPrePermian_Interpretation.shp), and the set of reprocessed lines used to interpret all 15 seismic horizons (All_Horizons_Interpretation.shp; Appendix B). These seismic interpretations are being used to support the AFER Project’s play-based energy resource assessments in the Pedirka and Western Eromanga basins.

  • <div>This dataset presents results of a first iteration of a 3D geological model across the Georgina Basin, Beetaloo Sub-basin of the greater McArthur Basin and South Nicholson Basin (Figure 1), completed as part of Geoscience Australia’s Exploring for the Future Program National Groundwater Systems (NGS) Project. These basins are located in a poorly exposed area between the prospective Mt Isa Province in western Queensland, the Warramunga Province in the Northern Territory, and the southern McArthur Basin to the north. These surrounding regions host major base metal or gold deposits, contain units prospective for energy resources, and hold significant groundwater resources. The Georgina Basin has the greatest potential for groundwater.</div><div>&nbsp;</div><div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. More information is available at http://www.ga.gov.au/eftf and https://www.eftf.ga.gov.au/national-groundwater-systems.</div><div>&nbsp;</div><div>This model builds on the work undertaken in regional projects across energy, minerals and groundwater aspects in a collection of data and interpretation completed from the first and second phases of the EFTF program. The geological and geophysical knowledge gathered for energy and minerals projects is used to refine understanding of groundwater systems in the region.</div><div>&nbsp;</div><div>In this study, we integrated interpretation of a subset of new regional-scale data, which include ~1,900 km of deep seismic reflection data and 60,000 line kilometres of AusAEM1 airborne electromagnetic survey, supplemented with stratigraphic interpretation from new drill holes undertaken as part of the National Drilling Initiative and review of legacy borehole information (Figure 2). A consistent chronostratigraphic framework (Figure 3) is used to collate the information in a 3D model allowing visualisation of stacked Cenozoic Karumba Basin, Mesozoic Carpentaria Basin, Neoproterozoic to Paleozoic Georgina Basin, Mesoproterozoic Roper Superbasin (including South Nicholson Basin and Beetaloo Sub-basin of the southern McArthur Basin), Paleoproterozoic Isa, Calvert and Leichhardt superbasins (including the pre-Mesoproterozoic stratigraphy of the southern McArthur Basin) and their potential connectivity. The 3D geological model (Figure 4) is used to inform the basin architecture that underpins groundwater conceptual models in the region, constrain aquifer attribution and groundwater flow divides. This interpretation refines a semi-continental geological framework, as input to national coverage databases and informs decision-making for exploration, groundwater resource management and resource impact assessments.</div><div><br></div><div>This metadata document is associated with a data package including:</div><div>·&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Nine surfaces (Table 1): 1-Digital elevation Model (Whiteway, 2009), 2-Base Cenozoic, 3-Base Mesozoic, 4-Base Neoproterozoic, 5-Base Roper Superbasin, 6-Base Isa Superbasin, 7-Base Calvert Superbasin, 8-Base Leichhardt Superbasin and 9-Basement.</div><div>·&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Eight isochores (Table 4): 1-Cenozoic sediments (Karumba Basin), 2-Mesozoic sediments (Carpentaria and Eromanga basins), 3-Paleozoic and Neoproterozoic sediments (Georgina Basin), 4-Mesoproterozoic sediments (Roper Superbasin including South Nicholson Basin and Beetaloo Sub-basin), 5-Paleoproterozoic Isa Superbasin, 6-Paleoproterozoic Calvert Superbasin, 7-Paleoproterozoic Leichhardt Superbasin and 8-Undifferentiated Paleoproterozoic above basement.</div><div>·&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Five confidence maps (Table 5) on the following stratigraphic surfaces: 1-Base Cenozoic sediments, 2-Base Mesozoic, 3-Base Neoproterozoic, 4-Base Roper Superbasin and 5-Combination of Base Isa Superbasin/Base Calvert Superbasin/Base Leichhardt Superbasin/Basement.</div><div>·&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Three section examples (Figure 4) with associated locations.</div><div>Two videos showing section profiles through the model in E-W and N-S orientation.</div>

  • <div>The Pedirka, Simpson and western Eromanga basins in central Australia have undergone a chequered exploration history which has seen a total of only 42 wells drilled across a study area of ~210,000km2. Exploration initially focused on conventional hydrocarbons from the 1950s-1980s, before shifting towards coal seam gas (CSG) opportunities in the mid-2000s. Active petroleum systems have been proven in the region by a non-commercial oil discovery at Poolowanna 1 in 1977, and by several wells that showed evidence of residual oil columns. CSG exploration wells have confirmed the presence of thick, marginally mature coal intervals on the flanks of the basins, but are yet to evaluate the deeper troughs.</div><div>Geoscience Australia, the Northern Territory Geological Survey and the South Australian Department for Energy and Mining have been collaborating on the Australia’s Future Energy Resources project under the Australian government funded Exploring for the Future Program to undertake an assessment of the resource potential for conventional and unconventional hydrocarbons, and the geological carbon and storage (GCS) potential of the greater Pedirka region. </div><div>The project applied a play-based exploration approach to qualitatively assess the resource potential of the region. The Carboniferous to Cretaceous stratigraphic interval was divided into 14 plays which were evaluated for the presence of sediment-hosted energy resources through post-drill analysis, gross depositional environment mapping and common risk segment mapping. The analysis identified energy resources and GCS potential across multiple plays and locations within the study area. These results demonstrate, that while the region is underexplored, it should not be overlooked by future exploration activities.</div> Published in The APPEA Journal 2023. <b>Citation:</b> Iwanec Jeremy, Strong Paul, Bernecker Tom (2023) Underexplored but not forgotten: assessing the energy resources potential of the greater Pedirka Basin region through play-based mapping. <i>The APPEA Journal</i><b> 63</b>, S251-S256. https://doi.org/10.1071/AJ22150

  • Publicly available data was compiled to provide a common information base for resource development, and environmental and regulatory decisions in the Eromanga Basin. This data guide gives examples of how these data can be used to create the components of a workflow to identify geological storage of carbon dioxide (CO2) opportunities. The data guide is designed to support the data package that provide insights on the geological storage of CO2 in the Eromanga Basin. The geological storage of CO2 assessment for the Eromanga Basin overlying the Cooper, Adavale and Galilee basins encompasses 6 of the 9 geological intervals, termed plays – these intervals have been defined by Wainman et al. (2023a, b). The assessment captures data from the Great Artesian Basin geological and hydrogeological surfaces update (Vizy and Rollet, 2022), Queensland Petroleum Exploration Database (QPED) from the Geological Survey of Queensland (GSQ) Open Data Portal (2020a), the Petroleum Exploration and Production System of South Australia (PEPS, 2021); Bradshaw et al. (2009) and Draper (2002) along with the scientific literature to inform the 4 components required for a prospective geological storage of CO2 system. These datasets are used to map out gross depositional environments and their geological properties relevant for geological storage of CO2 assessments. From these datasets, the following properties were evaluated and mapped across the basin: injectivity, storage efficiency, containment and structural complexity. The data are compiled at a point in time to inform decisions on resource development opportunities. The data guide outlines the play-based workflow for assessing geological storage of CO2 prospectivity. Each of the elements required for a prospective geological storage of CO2 system are explained and mapped. These data were merged and spatially multiplied to show the relative assessment of geological storage of CO2 prospectivity across the basin, both at a play interval and basin scale. As an example of assessments contained within the data package, this data guide showcases the geological storage of CO2 prospectivity of the Namur-Murta Play interval.

  • Publicly available groundwater data have been compiled to provide a common information base to inform environmental, resource development and regulatory decisions in the Adavale Basin region. This data guide gives examples of how these data can be used. The data package included with this data guide captures existing knowledge of Eromanga Basin aquifers in the Adavale Basin region and their properties, including salinity, water levels, resource size, potential aquifer yield and surface water interactions. The methods used to derive these data for all Eromanga Basin aquifers in the Adavale Basin region are outlined in the associated metadata files. These are described in groundwater conceptual models (Gouramanis et al., 2023). The Eromanga Basin overlying the Adavale Basin includes 5 broadly defined aquifer intervals: from deepest to shallowest, these are the Poolowanna, Hutton, Adori, Cadna-owie–Hooray and Winton-Mackunda aquifers. Compiled data are assigned to these intervals and used to characterise groundwater systems at the basin scale. The data are compiled for a point-in-time to inform decisions on potential resource developments in the Basin. The available historical groundwater data can be used to assess the potential effects on groundwater. The data can also be used for other purposes, such as exploring unallocated groundwater resource potential. Data to January 2022 are used for this compilation.

  • Publicly available groundwater data have been compiled to inform environmental, resource development and regulatory decisions in the Adavale Basin region. This web service summarises salinity, water levels, resource size, potential aquifer yield and surface water–groundwater interactions for the Eromanga Basin located within the Adavale Basin region.

  • Publicly available data was compiled to provide a common information base for resource development, environmental and regulatory decisions in the Eromanga Basin region. This web service summarises shale resources and coal seam gas prospectivity of the Eromanga Basin.