hydrogen
Type of resources
Keywords
Publication year
Service types
Topics
-
This web map service provides visualisations of the outputs from the five scenarios assessed in the analysis of prospective hydrogen production regions of Australia. Datasets used as inputs into the hydrogen production prospectivity analysis have been sourced from the Department of Environment and Energy, PSMA Australia, Garrad Hassan Pacific Pty. Ltd., Australian Bureau of Meteorology, Department of Resources Energy and Tourism, Queensland Department of Employment, Economic Development and Innovation, NSW Department of Planning, Industry and Environment, and Geoscience Australia.
-
This web map service provides visualisations of datasets used as inputs into the analysis of prospective hydrogen production regions of Australia. The service has been developed using datasets sourced from the Department of Environment and Energy, PSMA Australia, Garrad Hassan Pacific Pty. Ltd., Australian Bureau of Meteorology, Department of Resources Energy and Tourism, Queensland Department of Employment, Economic Development and Innovation, NSW Department of Planning, Industry and Environment, and Geoscience Australia
-
Six gas samples were collected from the possum belly (PB) of the shaker assembly during the drilling of NDI Carrara 1. The sample depths ranged from 1187 m to 1360 m and were from organic-rich Proterozoic rock units. The molecular composition and carbon and hydrogen isotope compositions of the individual PB gas components (methane, ethane, propane and carbon dioxide) suggest that the gases were sourced from local, thermally mature, organic-rich shales and siltstones. After taking into account the air and excess nitrogen content in the PB gases, the helium content of the PB gases is low while the molecular hydrogen contents is up to over a 100 times higher than the helium content. Both molecular hydrogen and helium likely have a major radiogenic origin. Based on the results, there is potential for a yet-to-be quantified unconventional hydrocarbon resource in the vicinity of the NDI Carrara 1 well.
-
This web map service provides visualisations of datasets used as inputs into the analysis of prospective hydrogen production regions of Australia. The service has been developed using datasets sourced from the Department of Environment and Energy, PSMA Australia, Garrad Hassan Pacific Pty. Ltd., Australian Bureau of Meteorology, Department of Resources Energy and Tourism, Queensland Department of Employment, Economic Development and Innovation, NSW Department of Planning, Industry and Environment, and Geoscience Australia
-
The Source Rock and Fluids Atlas delivery and publication services provide up-to-date information on petroleum (organic) geochemical and geological data from Geoscience Australia's Organic Geochemistry Database (ORGCHEM). The sample data provides the spatial distribution of petroleum source rocks and their derived fluids (natural gas and crude oil) from boreholes and field sites in onshore and offshore Australian basins. The services provide characterisation of source rocks through the visualisation of Pyrolysis, Organic Petrology (Maceral Groups, Maceral Reflectance) and Organoclast Maturity data. The services also provide molecular and isotopic characterisation of source rocks and petroleum through the visualisation of Bulk, Whole Oil GC, Gas, Compound-Specific Isotopic Analyses (CSIA) and Gas Chromatography-Mass Spectrometry (GCMS) data tables. Interpretation of these data enables the characterisation of petroleum source rocks and identification of their derived petroleum fluids that comprise two key elements of petroleum systems analysis. The composition of petroleum determines whether or not it can be an economic commodity and if other processes (e.g. CO2 removal and sequestration; cryogenic liquefaction of LNG) are required for development.
-
This short film promotes Geoscience Australia's online and publicly accessible hydrogen data products. The film steps through the functionality of GA's Australian Hydrogen Opportunities Tool (AusH2), and describes the upcoming Hydrogen Economic Fairways Tool which has been created through a collaborative effort with Monash University.
-
Geoscience Australia's Australian National Hydrocarbon Geochemistry Data Collection comprises Oracle database tables from the Organic Geochemistry (ORGCHEM) schema and derivative information in the Petroleum Systems Summary database (Edwards et al., 2020, 2023; Edwards and Buckler, 2024). The ORGCHEM schema includes organic geochemistry, organic petrology and stable isotope database tables that capture the analytical results from sample-based datasets used for the discovery and evaluation of sediment-hosted resources. A focus is to capture open file data relevant to energy (i.e., petroleum and hydrogen) exploration, including source rocks, crude oils and natural gases from both onshore and offshore Australian sedimentary basins. The database tables also include complementary physical properties and complementary inorganic analyses on sedimentary rocks and hydrocarbon-based earth materials. The data are produced by a wide range of destructive analytical techniques conducted on samples submitted by industry under legislative requirements, as well as on samples collected by research projects undertaken by Geoscience Australia, other government agencies and scientific institutions. Some of these results have been generated by Geoscience Australia, whereas other data are compiled from service company reports, well completions reports, government reports, published papers and theses. The data is non-confidential and available for use by Government, the energy exploration industry, research organisations and the community. The Petroleum Systems Summary database stores the compilation of the current understanding of petroleum systems information, including the statistical evaluation of the analytical data by basin across the Australian continent. <b>Value: </b>These data in the ORGCHEM database tables comprise the raw organic geochemistry, organic petrological and stable isotopic values generated for Australian source rocks, crude oils and natural gases and is the only public comprehensive database at the national scale. The raw data are used as input values to other studies, such as basin analysis, petroleum systems evaluation and modelling, resource assessments, enhanced oil recovery projects, and national mapping projects. Derived datasets and value-add products are created based on calculated values and interpretations to provide information on the subsurface petroleum prospectivity of the Australian continent, as summarised in the Petroleum Systems Summary database. The data collection aspires to build a national scale understanding of Australia's petroleum and hydrogen resources. This data collection is useful to government for evidence-based decision making on sediment-hosted energy resources and the energy industry for de-risking both conventional and unconventional hydrocarbon exploration programs, hydrogen exploration programs, and carbon capture, utilisation and storage programs. <b>Scope: </b>The database initially comprised organic geochemical and organic petrological data on organic-rich sedimentary rocks, crude oils and natural gas samples sourced from petroleum wells drilled in the onshore and offshore Australian continent, including those held in the Australian National Offshore Wells Data Collection. Over time, other sample types (e.g., fluid inclusions, mineral veins, bitumen) from other borehole types (e.g., minerals, stratigraphic including the Integrated Ocean Drilling Program, and coal seam gas), marine dredge samples and field sites (outcrop, mines, surface seepage samples, coastal bitumen strandings) have been analysed for their molecular and stable isotopic chemical compositions and are captured in the databases. The organic geochemical database tables and derivative data compiled in the Petroleum Systems Summary database are delivered by web services and analytical tools in the <a href="https://portal.ga.gov.au/">Geoscience Australia Data Discovery Portal </a> and specifically in the <a href="https://portal.ga.gov.au/persona/sra">Source Rock and Fluid Atlas Persona</a>. These web services enable interrogation of source rock and petroleum fluids data within boreholes and from field sites and facilitate correlation of these elements of the petroleum system within and between basins. <b>Reference</b> Edwards, D.S., Buckler, T., Grosjean, E. & Boreham, C.J. 2024. Organic Geochemistry (ORGCHEM) Database. Australian Source Rock and Fluid Atlas. Geoscience Australia, Canberra. https://pid.geoscience.gov.au/dataset/ga/149422 Edwards, D., Hawkins, S., Buckler, T., Cherukoori, R., MacFarlane, S., Grosjean, E., Sedgmen, A., Turk, R. 2023. Petroleum Systems Summary database. Geoscience Australia, Canberra. https://dx.doi.org/10.26186/148979 Edwards, D.S., MacFarlane, S., Grosjean, E., Buckler, T., Boreham, C.J., Henson, P., Cherukoori, R., Tracey-Patte, T., van der Wielen, S.E., Ray, J., Raymond, O. 2020. Australian source rocks, fluids and petroleum systems – a new integrated geoscience data discovery portal for maximising data potential. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/133751.
-
<div>GeoInsight was an 18-month pilot project developed in the latter part of Geoscience Australia’s Exploring for the Future Program (2016–2024). The aim of this pilot was to develop a new approach to communicating geological information to non-technical audiences, that is, non-geoscience professionals. The pilot was developed using a human-centred design approach in which user needs were forefront considerations. Interviews and testing found that users wanted a simple and fast, plain-language experience which provided basic information and provided pathways for further research. GeoInsight’s vision is to be an accessible experience that curates information and data from across Geoscience Australia, helping users make decisions and refine their research approach, quickly and confidently.</div><div><br></div><div>In the first iteration of GeoInsight, selected products for energy, minerals, water, and complementary information from Geoscience Australia’s Data Discovery Portal and Data and Publications Catalogue were examined to (1) gauge the relevance of the information they contain for non-geoscientists and, (2) determine how best to deliver this information for effective use by non-technical audiences.</div><div><br></div><div>This Record documents the technical details of the methods used for summarising energy commodities for GeoInsight. These methods were devised to convey current production and future production/extraction potential quickly and efficiently for regions across the Australian continent. Evaluated energy commodities include oil and gas, hydrogen and geological hydrogen storage, uranium and thorium, coal (black and brown), geothermal energy, and renewable energy. Carbon storage, a decarbonisation enabler, was also addressed under the energy theme.</div><div><br></div><div>This document contains two sections:</div><div><strong>Production Summary:</strong> To showcase where energy resources are being produced in different regions of Australia. The source datasets provide a snapshot of energy production activities at the time of publication. </div><div><strong>Potential Summary:</strong> To highlight, at first glance, the likelihood that future energy production and decarbonisation initiatives may occur in different regions of Australia. The source datasets provide a snapshot of future energy potential at the time of publication.</div><div><br></div><div>Any updates to the methodology used in GeoInsight will be accompanied by updates to this document, including a change log.</div><div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div><div><br></div>
-
<p>There is significant interest in Australia, both federally and at the state level, to develop a hydrogen production industry. Australia’s Chief Scientist, Alan Finkel, recently prepared a briefing paper for the COAG Energy Council outlining a road map for hydrogen. It identifies hydrogen has the potential to be a significant source of export revenue for Australia in future years, assist with decarbonising Australia’s economy and could establish Australia as a leader in low emission fuel production. As part of the ongoing investigations into the hydrogen production potential of Australia, Geoscience Australia has been commissioned by the Department of Industry, Innovation and Science to develop heat maps that show areas with high potential for future hydrogen production. The study is technology agnostic, in that it considers hydrogen production via electrolysis using renewable energy sources and also fossil fuel hydrogen coupled with carbon capture and storage (CCS). The heat maps presented in this work are synthesized from the key individual national-scale datasets that are relevant for hydrogen production. In the case of hydrogen from electrolysis, renewable energy potential and the availability of water are the most important factors, with various infrastructural considerations playing a secondary role. In the case of fossil fuel hydrogen, proximity to gas and coal resources, water and availability of carbon storage sites are the important parameters that control the heat maps. In this report we present 5 different heat map scenarios, reflecting different assumptions in the geospatial analysis and also reflecting to some degree the different projected timeframes for hydrogen production. The first three scenarios pertain to renewable energy and hydrogen produced by electrolysis. Differences between the three scenarios depend on whether hydrogen is produced near the coastal areas, where infrastructure and water are not issues or whether hydrogen can be produced in inland areas provided water does become a constraining factor. Assumptions regarding the proximity of a currently connected electrical grid to transport renewable energy also play a large role in the different scenarios. The final two scenarios focus on the potential for fossil fuel hydrogen, coupled with CCS, with the difference between the two scenarios being related to the timeframes for readiness for both fossil fuel production and availability of CO2 storage resources. <p>This dataset includes the raster inputs used for the five scenarios as part of the Prospective hydrogen production regions of Australia report.
-
Underground halite, or salt, deposits can potentially be used for large scale storage of hydrogen. This dataset maps the spatial distribution of known, thick underground halite deposits across Australia. Halite sequences included in this map are at least 100 metres thick (to ensure sufficient storage capacity) and are located onshore. Known, thick halite deposits are located in the Carnarvon, Amadeus and Adavale basins. Underground halite deposits have not been extensively explored for across Australia and additional halite deposits suitable for large scale hydrogen storage may exist. Geoscience Australia, through the Exploring for the Future (EFTF) program, is therefore exploring for underground halite deposits to further our understanding of sub-surface halite distribution for potential hydrogen storage. This map may be updated periodically to reflect new halite discoveries found during the EFTF program. This dataset is published with the permission of the CEO, Geoscience Australia.