geological sequestration
Type of resources
Keywords
Publication year
Scale
Topics
-
This geomechanical analysis of the Browse Basin was undertaken as part of the CO2CRC's Browse Basin Geosequestration Analysis. This study aims to constrain the geomechanical model (in situ stresses), and to evaluate the risk of fault reactivation. The stress regime in the Browse Basin is one of strike-slip faulting i.e. maximum horizontal stress (~ 28.3 MPa/km) > vertical stress (22 MPa/km) > minimum horizontal stress (15.7 MPa/km). Pore pressure is near hydrostatic in all wells except for two, which exhibit elevated pore fluid pressures at depths greater than 3500 m. A maximum horizontal stress orientation of 095' was considered to be most appropriate for the Barcoo sub-basin, which was the area of focus in this study. The risk of fault reactivation was calculated using the FAST (Fault Analysis Seal Technology) technique, which determines fault reactivation risk by estimating the increase in pore pressure required to cause reactivation. Fault reactivation risk was calculated using two fault strength scenarios; cohesionless faults (C = 0; ? = 0.6) and healed faults (C = 5; ? = 0.75). The orientations of faults with high and low reactivation risks is almost identical for healed and cohesionless faults. High angle faults striking N-S are unlikely to reactivate in the current stress regime. High angle faults orientated ENE-WSW and ESE-WNW have the highest fault reactivation risk. Due to the fact that the SH gradient was determined using frictional limits, the most unfavourably oriented cohesionless faults cannot sustain any pore pressure increase without reactivating. By contrast, using a cohesive fault model indicates that those same faults would be able to sustain a pore pressure increase (Delta P) of 9.6 MPa. However, it must be emphasized that the absolute values of Delta P presented in this study are subject to large errors due to uncertainties in the geomechanical model, in particular for the maximum horizontal stress. Therefore, the absolute values of Delta-P presented herein should not be used for planning purposes. Fault reactivation risk was evaluated for 10 faults with known orientations. All faults were interpreted as extending from below the Jurassic target reservoir formation to the surface. The dominant fault in the Barcoo sub-basin is the large fault which extends from Trochus 1 to Sheherazade 1 to Arquebus 1. This deeply penetrating, listric fault initially formed as a normal fault and was subsequently reactivated in thrust mode. Most of the faults in the Barcoo sub-basin trend broadly N-S and are therefore relatively stable with respect to increases in pore pressure. However, there are sections within some individual faults where fault orientation becomes close to optimal. In these sections, small increases in pore pressure (<5 MPa) may be sufficient to cause fault reactivation. If this were to occur, then significant risk of CO2 leakage would exist, as these sections cross-cut the regional seal.
-
Australia has been making major progress towards early deployment of carbon capture and storage from natural gas processing and power generation sources. This paper will review, from the perspective of a government agency, the current state of various Australian initiatives and the advances in technical knowledge up until the 2010 GHGT conference. In November 2008, the Offshore Petroleum and Greenhouse Gas Storage Bill 2006 was passed by the Australian Parliament and established a legal framework to allow interested parties to explore for and evaluate storage potential in offshore sedimentary basins that lie in Australian Commonwealth waters. As a result of this Act, Australia became the first country in the world, in March 2009, to open exploration acreage for storage of greenhouse gases under a system that closely mirrors the well-established Offshore Petroleum Acreage Release. The ten offshore areas offered for geological storage assessment are significantly larger than their offshore petroleum counterparts to account for, and fully contain, the expected migration pathways of the injected GHG substances. The co-incidence of the 2009 Global Financial Crisis may have reduced the number of prospective CCS projects that were reported to be in the 'pipe-line' and the paper examines the implications of this apparent outcome. The Carbon Storage Taskforce has brought together both Australian governments technical experts to build a detailed assessment of the perceived storage potential of Australia's sedimentary basins. This evaluation has been based on existing data, both on and offshore. A pre-competitive exploration programme has also been compiled to address the identified data gaps and to acquire, with state funding, critical geological data which will be made freely available to encourage industrial participation in the search for commercial storage sites.
-
The presence of abundant bedded sulfate deposits before 3.2 Ga and after 1.8 Ga, the peak in iron formation abundance between 3.2 and 1.8 Ga, and the aqueous geochemistry of sulfur and iron together suggest that the redox state, and the abundances of sulfur and iron in the hydrosphere varied widely during the Archean and Proterozoic. We propose a layered hyddrosphere prior to 3.2 Ga in which sulfate produced by atmospheric photolytic reactions was enriched in an upper layer, whereas the underlying layer was reduced and sulfur-poor. Between 3.2 and 2.4 Ga, biolotical and/or inorganic sulfate reduction reactions removed sulfate from the upper layer, producing broadly uniform, reduced, sulfur-poor and iron-rich oceans. As a result of increasing atmospheric oxygenation around 2.4 Ga, the flux of sulfate into the hydrosphere by oxidative weathering was greatly enhanced, producing layered oceans, with sulfate-rich, iron-poor surface waters and reduced, sulfur-poor and iron-rich bottom waters. This process continued so that by 1.8 Ga, the hydrosphere was generally oxidized, sulfate-rich and iron-poor throughout. Variations in sulfur and iron abundances suggest that the redox state of the oceans was buffered by iron before 2.4 Ga and by sulfur after 1.8 Ga.
-
This paper briefly summaries how intrinsic uncertainties in reservoir characterization, at the proposed Otway Basin Naylor Field carbon-dioxide geo-sequestration site, were risk managed by a process of creation and evaluation of a series of geo-models (term to describe the geo-cellular geological models created by PETREL software) that cover the range of plausible geological possibilities, as well as extreme case scenarios. Optimization methods were employed, to minimize simulation run time, whilst not compromising the essential features of the basic geo-model. For four different Cases, 7 geo-models of the reservoir were created for simulation studies. The reservoir simulation study relies primarily on production history matching and makes use of all available information to help screen and assess the various geo-models. The results suggest that the bulk reservoir permeability is between 0.5 - 1Darcy, the original gas-water-contact was about 2020 mSS and there is a strong aquifer drive.
-
The middle to lower Jurassic sequence in Australia's Surat Basin has been identified as a potential reservoir system for geological CO2 storage. The sequence comprises three major formations with distinctly different mineral compositions, and generally low salinity formation water (TDS<3000 mg/L). Differing geochemical responses between the formations are expected during geological CO2 storage. However, given the prevailing use of saline reservoirs in CCS projects elsewhere, limited data are available on CO2-water-rock dynamics during CO2 storage in such low-salinity formations. Here, a combined batch experiment and numerical modelling approach is used to characterise reaction pathways and to identify geochemical tracers of CO2 migration in the low-salinity Jurassic sandstone units. Reservoir system mineralogy was characterized for 66 core samples from stratigraphic well GSQ Chinchilla 4, and six representative samples were reacted with synthetic formation water and high-purity CO2 for up to 27 days at a range of pressures. Low formation water salinity, temperature, and mineralization yield high solubility trapping capacity (1.18 mol/L at 45°C, 100 bar), while the paucity of divalent cations in groundwater and the silicate reservoir matrix results in very low mineral trapping capacity under storage conditions. Formation water alkalinity buffers pH at elevated CO2 pressures and exerts control on mineral dissolution rates. Non-radiogenic, regional groundwater-like 87Sr/86Sr values (0.7048-0.7066) indicate carbonate and authigenic clay dissolution as the primary reaction pathways regulating solution composition, with limited dissolution of the clastic matrix during the incubations. Several geochemical tracers are mobilised in concentrations greater than found in regional groundwater, most notably cobalt, concentrations of which are significantly elevated regardless of CO2 pressure or sample mineralogy.
-
In March and April, 2012, Geoscience Australia undertook a seabed characterisation survey, aimed at supporting the assessment of CO2 storage potential of the Vlaming Sub-basin, Western Australia. The survey, undertaken as part of the National CO2 Infrastructure Plan program was targeted to provide an understanding of the link between the deep geological features of the area and the seabed, and connectivity between them as possible evidence for seal integrity. Data was acquired in two sections of the Rottnest Shelf lying above the regional seal - the South Perth Shale - and the underlying potentially CO2-suitable reservoir, the Gage Sandstone. Seabed samples were taken from 43 stations, and included 89 seabed grab samples. A total of 653 km2 of multibeam and backscatter data was obtained. Chirper shallow sub-bottom profile data was acquired concurrently. 6.65 km2 of side-scan sonar imagery was also obtained. The two surveyed areas, (Area 1 and Area 2), are set within a shallow sediment starved shelf setting. Area 2, situated to the southwest of Rottnest Island, is characterised by coralline red algal (rhodolith) beds, with ridges and mounds having significant rhodolith accumulations. The geomorphic expression of structural discontinuities outcropping at the seabed is evident by the presence of linear fault-like structures notable in Area 1, and north-south trending lineaments in Area 2. North-south trending structural lineaments on the outer section of Area 2 have in places, mounds standing 4-5 m above the seafloor in water depths of 80-85 m. Although there are apparent spatial correlations between seabed geomorphology and the structural geology of the basin, the precise relationship between ridges and mounds that are overlain by rhodolith accumulations, fluid seepage, and Vlaming Sub-basin geology is uncertain, and requires further work to elucidate any links.
-
The economics of the storage of CO2 in underground reservoirs in Australia have been analysed as part of the Australian Petroleum Cooperative Research Centre's GEODISC program. The analyses are based on cost estimates generated by a CO2 storage technical / economic model developed at the beginning of the GEODISC project. They also rely on data concerning the characteristics of geological reservoirs in Australia. The uncertainties involved in estimating the costs of such projects are discussed and the economics of storing CO2 for a range of CO2 sources and potential storage sites across Australia are presented. The key elements of the CO2 storage process and the methods involved in estimating the costs of CO2 storage are described and the CO2 storage costs for a hypothetical but representative storage project in Australia are derived. The effects of uncertainties inherent in estimating the costs of storing CO2 are shown. The analyses show that the costs are particularly sensitive to parameters such as the CO2 flow rate, the distance between the source and the storage site, the physical properties of the reservoir and the market prices of equipment and services. Therefore, variations in any one of these inputs can lead to significant variation in the costs of CO2 storage. Allowing for reasonable variations in all the inputs together in a Monte Carlo simulation of any particular site, then a large range of total CO2 storage costs is possible. The effect of uncertainty for the hypothetical representative storage site is illustrated. The impact of storing other gases together with CO2 is analysed. The other gases include methane, hydrogen sulphide, nitrogen, nitrous oxides and oxides of sulphur, all of which potentially could be captured together with CO2. The effect on storage costs when varying quantities of other gases are injected with the CO2 is shown. Based on the CO2 storage estimates and the published costs capturing CO2 from industrial processes, the econ
-
CO2CRC Project 1 - Site Specific Studies for Geological Storage of carbon Dioxide Part 1: Southeast Queensland CO2 Storage Sites - Basin Desk-top, Geological Interpretation and Reservoir Simulation of Regional Model
-
Covering an area of approximately 247 000km2, the Galilee Basin is a significant feature of central Queensland. Three main depocentres contain several hundred metres of Late Carboniferous to Middle Triassic sediments. Sedimentation in the Galilee Basin was dominated by fluvial to lacustrine depositional systems. This resulted in a sequence of sandstones, mudstones, siltstones, coals and minor tuff in what was a relatively shallow intracratonic basin with little topographic relief. Forty years or more of exploration in the Galilee Basin has failed to discover any economic accumulations of hydrocarbons, despite the presence of apparently fair to very good reservoirs and seals in both the Permian and Triassic sequence. Despite some relatively large distances (upwards of 500km) between sources and sinks, previous and ongoing work on the Galilee Basin suggests that it has potential to sequester a significant amount of Queensland's carbon dioxide emissions. Potential reservoirs include the Early Permian Aramac Coal Measures, the Late Permian Colinlea Sandstone and the Middle Triassic Clematis Sandstone. These are sealed by several intraformational and local seals as well as the regional Triassic Moolayember Formation. With few suitable structural traps and little faulting throughout the Galilee sequence, residual trapping within saline reservoir is the most likely mechanism for storing CO2. The current study is aimed at building a sound geological model of the basin through activities such as detailed mapping, well correlation, and reservoir and seal analysis leading to reservoir simulations to gain a better understanding of the basin.
-
Identification of major hydrocarbon provinces from existing world assessments for hydrocarbon potential can be used to identify those sedimentary basins at a global level that will be highly prospective for CO2 storage. Most sedimentary basins which are minor petroleum provinces and many non-petroliferous sedimentary basins will also be prospective for CO2 storage. Accurate storage potential estimates will require that each basin be assessed individually, but many of the prospective basins may have ranges from high to low prospectivity. The degree to which geological storage of CO2 will be implemented in the future will depend on the geographical and technical relationships between emission sites and storage locations, and the economic drivers that affect the implementation for each source to sink match. CO2 storage potential is a naturally occurring resource, and like any other natural resource there will be a need to provide regional access to the better sites if the full potential of the technology is to be realized. Whilst some regions of the world have a paucity of opportunities in their immediate geographic confines, others are well endowed. Some areas whilst having good storage potential in their local region may be challenged by the enormous volume of CO2 emissions that are locally generated. Hubs which centralize the collection and transport of CO2 in a region could encourage the building of longer and larger pipelines to larger and technically more viable storage sites and so reduce costs due to economies of scale.