From 1 - 10 / 206
  • The Bass Basin is a moderately explored Cretaceous to Cainozoic intracratonic rift basin on Australia's southeastern margin, underlying the shallow seabed between Tasmania and the Victorian mainland (Bass Strait; Figure 1). The basin contains proven commercial reserves of gas and condensate that are soon to be developed (Yolla gas field, Origin Energy Resources Ltd-operated BassGas Project). Other discoveries in the basin include the White Ibis and Pelican gas fields. To date, the 32 wells drilled have targeted Upper Cretaceous to Middle Eocene reservoirs within fault blocks and anticlinal structures. The targeted succession comprises interbedded fluvio-deltaic and lacustrine sandstones, siltstones and shales. The principal source rocks in the Bass Basin are interbedded coals (ranging from 5 to 25 m thick) and lacustrine shales of early Palaeogene age. Geochemical analyses show these source rocks have generated liquid and gaseous hydrocarbons, with the coals being the dominant source for the liquids (Boreham et al., 2003).

  • The Onshore Energy Security Program, funded by the Australian Government, Geoscience Australia has acquired deep seismic reflection data across several frontier sedimentary basins to stimulate interest in petroleum exploration in onshore Australia. Detailed interpretation of deep seismic reflection profiles from four onshore basins, focusing on overall basin geometry and internal sequence stratigraphy will be presented here, with the aim of assessing the petroleum potential of the basins. At the Southern end of the exposed part of the Mt Isa Province, northwest Queensland, a deep seismic line (06GA-M6) crosses the Burke River Structural Zone of the Georgina Basin. The basin here is >50 km wide, with a half graben geometry, and bound in the west by a rift border fault. The Millungera Basin in northwest Queensland is completely covered by the thin Eromanga basin and was unknown prior to being detected on two seismic lines (06GA-M4 and 06GA-M5) acquired in 2006. Following this, seismic line 07GA-IG1 imaged a 65 km wide section of the basin. The geometry of internal stratigraphic sequences and post-depositional thrust margin indicate that the original succession was much thicker than preserved today. The Yathong Trough in the southeast part of the Darling Basin in NSW has been imaged in seismic line 08GA-RS2 and interpreted in detail using sequence stratigraphic principles, with several sequences being mapped. The upper part of this basin contains Devonian sediments, with potential source rocks at depth.

  • Legacy product - no abstract available

  • The frontier deepwater Otway and Sorell basins lie offshore of south-western Victoria and western Tasmania at the eastern end of Australia's Southern Rift System. The basins developed during rifting and continental separation between Australia and Antarctica from the Cretaceous to Cenozoic. The complex structural and depositional history of the basins reflects their location in the transition from an orthogonal-obliquely rifted continental margin (western-central Otway Basin) to a transform continental margin (southern Sorell Basin). Despite good 2D seismic data coverage, these basins remain relatively untested and their prospectivity poorly understood. The deepwater (>500 m) section of the Otway Basin has been tested by two wells, of which Somerset 1 recorded minor gas shows. Three wells have been drilled in the Sorell Basin, where minor oil shows were recorded near the base of Cape Sorell 1. As part of the Federal Government funded Offshore Energy Security Program, Geoscience Australia has acquired new aeromagnetic data and utilised open file seismic datasets to undertake an integrated regional study of the deepwater Otway and Sorell basins. Structural interpretation of the new aeromagnetic data and potential field modelling provide new insights into the basement architecture and tectonic history, and highlights the role of pre-existing structural fabric in controlling the evolution of the basins. Regional scale mapping of key sequence stratigraphic surfaces across the basins, integration of the regional structural analysis, and petroleum systems modelling have resulted in a clearer understanding of the tectonostratigraphic evolution and petroleum prospectivity of this complex basin system.

  • The Ceduna Sub-basin of the deep-water frontier Bight Basin contains a Middle Jurassic-Late Cretaceous sedimentary succession in excess of 15 km thick. Nine offshore exploration wells have been drilled in the basin, mostly clustered around the inboard edge of the Ceduna Sub-basin. As a result, the distal mid-Late Cretaceous strata predicted to contain potential source rock facies, had previously not been sampled. The presence of high quality source rocks in the basin was therefore an open question. 2D seismic data was used to delineate targets for sampling of the pre-Campanian section of the basin. Identified targets included potential source intervals of Albian-Santonian age at locations on the seaward edge of the Ceduna and Eyre Terrace where canyon formation, slumping and faulting have exposed the section. Also, a series of sites were selected to test for potential hydrocarbon seepage in the basin. These sites include areas where recently reactivated deep-seated faults were exposed at the seafloor, basin margin areas where facies thin, and areas where possible seepage was identified from Synthetic Aperture Radar (SAR) data. In February and March 2007, a 3-week marine acquisition programme was carried out on the RV Southern Surveyor. Potential dredge targets were first surveyed with 30 kHz EM300 swath bathymetry and observed with Topaz 3.5 kHz sub-bottom profiler. Near-live swath processing and slope analysis techniques enabled site specific dredge sampling of seafloor terrains where Cretaceous section outcropped or slopes were sufficient to ensure only a thin cover of overlying sediments. Targets include fault scarps and eroded sides of canyons. A better-than-expected number of successful dredges were collected (total of 37) from water depths ranging from 1600-4500m. Geochemical analysis of 259 dredge samples for total organic carbon (TOC) and pyrolysis yields (Rock Eval) identified good to very good organic richness in 13 samples, with TOC values between 2.1% and 6.2%. Of these, seven show liquids potential with Hydrocarbon Index (HI) values ranging between 274 and 479 (mgHC/TOC). The rocks with the best source rock characteristics came from high priority sampling sites in the westernmost Ceduna Sub-basin. Organic geochemical analysis has provided evidence for preservation of organic matter under anoxic conditions close to or at the sediment-water interface. Biostratigraphic analysis of these organic-rich rocks has yielded an age around the Cenomanian-Turonian boundary. Although the dredged rocks are immature for hydrocarbon generation, interpretation of an extensive seismic grid across the basin and petroleum system modelling have shown that this succession occurs with the oil window in the central Ceduna Sub-basin. The results of this study provide the best evidence to date for the presence of good quality liquids-prone source rocks in the basin, successfully addressing a key industry concern in this petroleum exploration frontier.

  • This report summarises technical information on the petroleum and non-petroleum accumulations found in the Browse Basin up to 30 June 1991. The report contains a brief overview of the geology of the Browse Basin and describes the location and significance of all known petroleum accumulations. The nature of the Browse Basin sequence, and the petroleum accumulations found to date, indicate that additional petroleum resources are likely to be discovered. The known petroleum accumulations are a major potential resource and highlight the potential of the basin to satisfy some of the nation's energy and industrial resource requirements in the next century.

  • As at January 1993, nineteen hydrocarbon accumulations, six of which are commercial, have been discovered in the Canning Basin. The commercial accumulations occur in Permian to Devonian reservoirs on an area of relatively shallow basement (Lennard Shelf) flanking the northern margin of the Fitzroy Trough. Oil is produced from Famennian reefs, associated drape structures, and four-way dip closures in Permo-carboniferous, Grant Group and Anderson Formation sandstones. The most likely sources of these hydrocarbons are Late Devonian and Carboniferous marine shales in the Fitzroy Trough kitchen area. The small size of the accumulations in the Canning basin (less than 0.5 million barrels of recoverable oil) precludes the development of large infrastructure projects. Oil is trucked to the storage and shiploading facilities at Broome and then shipped to the Kwinana oil refinery in Western Australia. On the southern margin of the Fitzroy Trough, oil and gas have been recovered from a transgressive Ordovician sequence of sandstones shales and carbonates. Although the Ordovician has yet to yield a commercial discovery, Devonian reef plays in the overlying section may enhance the attractiveness of Ordovician objectives in this area. To date, exploration effort in the basin has been largely directed to the northern, onshore Canning Basin. The offshore Canning and the Kidson Sub-basin remain underexplored. Higher risk plays in these areas have yet to be adequately tested.

  • This is one of a series of three reports dealing with the geological framework of the Lord Howe Rise (LHR) region of the Tasman Sea. These Geoscience Australia (GA) reports cover the Northern LHR (Van de Beuque et al., in press), Central LHR Gower Basin (Willcox and Sayers, this report), and the Southern LHR (Stagg et al., in press). They provide part of Geoscience Australia's commitment to examine possible legal boundaries, geology and resource potential, of regions to which Australia may lay claim under the 1982 United Nations Convention on the Law of the Sea (UNCLOS).