From 1 - 10 / 84
  • Australia is increasingly recognised as a global hotspot for sponge biodiversity, with sponges playing key roles in habitat provision, water quality, bioerosion, and biodiscovery. Despite the intense focus on marine resource management in northern Australia, there is a large knowledge gap about sponge communities in this region. This study focuses on shelf environments of the Timor Sea, in particular the Van Diemen Rise and Londonderry Rise which are characterised by extensive carbonate terraces, banks and reefs, separated by soft sediment plains and deeply incised valleys. These carbonate terraces and banks are recognised as a Key Ecological Feature (KEF) in the marine region plans for northern Australia (North and Northwest Marine Regions) and are in part incorporated into the Oceanic Shoals Commonwealth Marine Reserve. To support the management of this marine reserve and its associated KEF, we use new datasets to investigate regional patterns in sponge assemblages and their relationships to seabed geomorphology. To do this, we use sponge assemblage data and multibeam-derived variables (depth, backscatter, slope, geomorphic feature) from seven survey areas located on the Van Diemen Rise (four sites) and Londonderry Rise (three sites), spanning approximately 320 km in an east-west direction. The dataset was collected during three collaborative surveys undertaken in 2009, 2010 and 2012 by Geoscience Australia, the Australian Institute of Marine Science and the Museum and Art Gallery of the Northern Territory as part of the Australian Government's Offshore Energy Security Initiative and the National Environmental Research Program Marine Biodiversity Hub. All surveys returned geophysical, biological, geochemical, and sedimentological data. Benthic biota were collected with a benthic sled across a range of geomorphic features (bank, terrace, ridge, plain, valley) identified from high-resolution multibeam sonar. Sponges were then taxonomically identified to 350 species, with the species accumulation curve indicating there may be over 900 sponge species in the region. Sponge assemblages were different between the Van Diemen Rise and Londonderry Rise, as well as between individual banks in the same area, indicating that different suites of species occurred at regional (east-west) and local (between banks) scales. Relationships between sponges and other multibeam-derived variables are more complex and warrant further research. The current study will help: i) facilitate integrated marine management by providing a baseline species inventory; ii) support the listing of carbonate banks of the Timor Sea shelf as a Key Ecological Feature, and; iii) inform future monitoring of marine protected area performance, particularly for areas of complex seabed geomorphology.

  • Geoscience Australia undertook a marine survey of the Vlaming Sub-basin in March and April 2012 to provide seabed and shallow geological information to support an assessment of the CO2 storage potential of this sedimentary basin. The survey was undertaken under the Australian Government's National CO2 Infrastructure Plan (NCIP) to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. The Vlaming Sub-basin is located offshore from Perth, Western Australia, and was previously identified by the Carbon Storage Taskforce (2009) as potentially highly suitable for CO2 storage. The principal aim of the Vlaming Sub-basin marine survey (GA survey number GA334) was to look for evidence of any past or current gas or fluid seepage at the seabed, and to determine whether these features are related to structures (e.g. faults) in the Vlaming Sub-basin that may extend up to the seabed. The survey also mapped seabed habitats and biota in the areas of interest to provide information on communities and biophysical features that may be associated with seepage. This research addresses key questions on the potential for containment of CO2 in the Early Cretaceous Gage Sandstone (the basin's proposed CO2 storage unit) and the regional integrity of the South Perth Shale (the seal unit that overlies the Gage Sandstone). This dataset comprises sidescan grids.

  • Geoscience Australia (GA) conducted a marine survey (GA0345/GA0346/TAN1411) of the north-eastern Browse Basin (Caswell Sub-basin) between 9 October and 9 November 2014 to acquire seabed and shallow geological information to support an assessment of the CO2 storage potential of the basin. The survey, undertaken as part of the Department of Industry and Science's National CO2 Infrastructure Plan (NCIP), aimed to identify and characterise indicators of natural hydrocarbon or fluid seepage that may indicate compromised seal integrity in the region. The survey was conducted in three legs aboard the New Zealand research vessel RV Tangaroa, and included scientists and technical staff from GA, the NZ National Institute of Water and Atmospheric Research Ltd. (NIWA) and Fugro Survey Pty Ltd. Shipboard data (survey ID GA0345) collected included multibeam sonar bathymetry and backscatter over 12 areas (A1, A2, A3, A4, A6b, A7, A8, B1, C1, C2b, F1, M1) totalling 455 km2 in water depths ranging from 90 - 430 m, and 611 km of sub-bottom profile lines. Seabed samples were collected from 48 stations and included 99 Smith-McIntyre grabs and 41 piston cores. An Autonomous Underwater Vehicle (AUV) (survey ID GA0346) collected higher-resolution multibeam sonar bathymetry and backscatter data, totalling 7.7 km2, along with 71 line km of side scan sonar, underwater camera and sub-bottom profile data. Twenty two Remotely Operated Vehicle (ROV) missions collected 31 hours of underwater video, 657 still images, eight grabs and one core. This catalogue entry refers to chlorophyll a, b, c and phaeophytin a conentrations in the upper 2 cm of seabed sediments.

  • In September and October of 2011 Geoscience Australia surveyed part of the offshore northern Perth Basin in order to map potential sites of natural hydrocarbon seepage. The primary objectives of the survey were to map the spatial distribution of seepage sites and characterise the nature of the seepage at these sites (gas vs oil, macroseepage vs microseepage; palaeo vs modern day seepage) on the basis of: acoustic signatures in the water column, shallow subsurface and on the seabed; geochemical signatures in rock and sediment samples and the water column; and biological signatures on the seabed. Areas of potential natural hydrocarbon seepage that were surveyed included proven (drilled) oil and gas accumulations, a breached structure, undrilled hydrocarbon prospects, and areas with potential signatures of fluid seepage identified in seismic, satellite remote sensing and multibeam bathymetry data. Within each of these areas the survey acquired: water column measurements with the CTD; acoustic data with single- and multi-beam echosounders, sidescan sonar and sub-bottom profiler (sidescan not acquired in Area F as it was too deep in places); and sediment and biological samples with the Smith-McIntyre Grab. In addition, data were collected with a remotely operated vehicle (ROV), integrated hydrocarbon sensor array, and CO2 sensor in selected areas. Sampling with the gravity corer had limited success in many of the more shallow areas (A-E) due to the coarse sandy nature of the seabed sediments. This dataset comprises total chlorin concentrations and chlorin indices from the upper 2 cm of seabed sediments.

  • Geoscience Australia undertook a marine survey of the Leveque Shelf (survey number SOL5754/GA0340), a sub-basin of the Browse Basin, in May 2013. This survey provides seabed and shallow geological information to support an assessment of the CO2 storage potential of the Browse sedimentary basin. The basin, located on the Northwest Shelf, Western Australia, was previously identified by the Carbon Storage Taskforce (2009) as potentially suitable for CO2 storage. The survey was undertaken under the Australian Government's National CO2 Infrastructure Plan (NCIP) to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. The principal aim of the Leveque Shelf marine survey was to look for evidence of any past or current gas or fluid seepage at the seabed, and to determine whether these features are related to structures (e.g. faults) in the Leveque Shelf area that may extend to the seabed. The survey also mapped seabed habitats and biota to provide information on communities and biophysical features that may be associated with seepage. This research, combined with deeper geological studies undertaken concurrently, addresses key questions on the potential for containment of CO2 in the basin's proposed CO2 storage unit, i.e. the basal sedimentary section (Late Jurassic and Early Cretaceous), and the regional integrity of the Jamieson Formation (the seal unit overlying the main reservoir). This dataset comprises total chlorin concentrations and chlorin indices from the upper 2cm of seabed sediments.

  • Geoscience Australia (GA) conducted a marine survey (GA0345/GA0346/TAN1411) of the north-eastern Browse Basin (Caswell Sub-basin) between 9 October and 9 November 2014 to acquire seabed and shallow geological information to support an assessment of the CO2 storage potential of the basin. The survey, undertaken as part of the Department of Industry and Science's National CO2 Infrastructure Plan (NCIP), aimed to identify and characterise indicators of natural hydrocarbon or fluid seepage that may indicate compromised seal integrity in the region. The survey was conducted in three legs aboard the New Zealand research vessel RV Tangaroa, and included scientists and technical staff from GA, the NZ National Institute of Water and Atmospheric Research Ltd. (NIWA) and Fugro Survey Pty Ltd. Shipboard data (survey ID GA0345) collected included multibeam sonar bathymetry and backscatter over 12 areas (A1, A2, A3, A4, A6b, A7, A8, B1, C1, C2b, F1, M1) totalling 455 km2 in water depths ranging from 90 - 430 m, and 611 km of sub-bottom profile lines. Seabed samples were collected from 48 stations and included 99 Smith-McIntyre grabs and 41 piston cores. An Autonomous Underwater Vehicle (AUV) (survey ID GA0346) collected higher-resolution multibeam sonar bathymetry and backscatter data, totalling 7.7 km2, along with 71 line km of side scan sonar, underwater camera and sub-bottom profile data. Twenty two Remotely Operated Vehicle (ROV) missions collected 31 hours of underwater video, 657 still images, eight grabs and one core. This catalogue entry refers to total sediment metabolism, bulk carbonate and mineral specific surface area measurements, and major and minor trace elements and carbon and nitrogen concentrations and isotopes in the upper 2 cm of seabed sediments.

  • Geoscience Australia (GA) conducted a marine survey (GA0345/GA0346/TAN1411) of the north-eastern Browse Basin (Caswell Sub-basin) between 9 October and 9 November 2014 to acquire seabed and shallow geological information to support an assessment of the CO2 storage potential of the basin. The survey, undertaken as part of the Department of Industry and Science's National CO2 Infrastructure Plan (NCIP), aimed to identify and characterise indicators of natural hydrocarbon or fluid seepage that may indicate compromised seal integrity in the region. The survey was conducted in three legs aboard the New Zealand research vessel RV Tangaroa, and included scientists and technical staff from GA, the NZ National Institute of Water and Atmospheric Research Ltd. (NIWA) and Fugro Survey Pty Ltd. Shipboard data (survey ID GA0345) collected included multibeam sonar bathymetry and backscatter over 12 areas (A1, A2, A3, A4, A6b, A7, A8, B1, C1, C2b, F1, M1) totalling 455 km2 in water depths ranging from 90 - 430 m, and 611 km of sub-bottom profile lines. Seabed samples were collected from 48 stations and included 99 Smith-McIntyre grabs and 41 piston cores. An Autonomous Underwater Vehicle (AUV) (survey ID GA0346) collected higher-resolution multibeam sonar bathymetry and backscatter data, totalling 7.7 km2, along with 71 line km of side scan sonar, underwater camera and sub-bottom profile data. Twenty two Remotely Operated Vehicle (ROV) missions collected 31 hours of underwater video, 657 still images, eight grabs and one core. This catalogue entry refers to sediment oxygen demand measurements undertaken on seabed sediments (0-2 cm).

  • Geoscience Australia (GA) conducted a marine survey (GA0345/GA0346/TAN1411) of the north-eastern Browse Basin (Caswell Sub-basin) between 9 October and 9 November 2014 to acquire seabed and shallow geological information to support an assessment of the CO2 storage potential of the basin. The survey, undertaken as part of the Department of Industry and Science's National CO2 Infrastructure Plan (NCIP), aimed to identify and characterise indicators of natural hydrocarbon or fluid seepage that may indicate compromised seal integrity in the region. The survey was conducted in three legs aboard the New Zealand research vessel RV Tangaroa, and included scientists and technical staff from GA, the NZ National Institute of Water and Atmospheric Research Ltd. (NIWA) and Fugro Survey Pty Ltd. Shipboard data (survey ID GA0345) collected included multibeam sonar bathymetry and backscatter over 12 areas (A1, A2, A3, A4, A6b, A7, A8, B1, C1, C2b, F1, M1) totalling 455 km2 in water depths ranging from 90 - 430 m, and 611 km of sub-bottom profile lines. Seabed samples were collected from 48 stations and included 99 Smith-McIntyre grabs and 41 piston cores. An Autonomous Underwater Vehicle (AUV) (survey ID GA0346) collected higher-resolution multibeam sonar bathymetry and backscatter data, totalling 7.7 km2, along with 71 line km of side scan sonar, underwater camera and sub-bottom profile data. Twenty two Remotely Operated Vehicle (ROV) missions collected 31 hours of underwater video, 657 still images, eight grabs and one core. This catalogue entry refers to porosity, total chlorin and chlorin index data from the upper 2 cm of seabed sediments.

  • <p>This resource contains surface sediment data for Outer Darwin Harbour collected by Geoscience Australia (GA), the Australian Institute of Marine Science (AIMS) and the Northern Territory Government (Department of Land Resource Management) during the period from 28 May and 23 June 2015 on the RV Solander (survey SOL6187/GA0351). This project was made possible through offset funds provided by INPEX-led Ichthys LNG Project to Northern Territory Government Department of Land Resource Management, and co-investment from Geoscience Australia and Australian Institute of Marine Science. The intent of this four year (2014-2018) program is to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline data that enable the creation of thematic habitat maps that underpin marine resource management decisions. The specific objectives of the survey were to: <p>1. Obtain high resolution geophysical (bathymetry) data for outer Darwin Harbour, including Shoal Bay; <p>2. Characterise substrates (acoustic backscatter properties, grainsize, sediment chemistry) for outer Darwin Harbour, including Shoal Bay; and <p>3. Collect tidal data for the survey area. <p>Data acquired during the survey included: multibeam sonar bathymetry and acoustic backscatter; physical samples of seabed sediments, underwater photography and video of grab sample locations and oceanographic information including tidal data and sound velocity profiles. This dataset comprises sediment oxygen demand measurments made on seabed sediments. <p>A detailed account of the survey is provided in: <p>Siwabessy, P.J.W., Smit, N., Atkinson, I., Dando, N., Harries, S., Howard, F.J.F., Li, J., Nicholas, W.A., Potter, A., Radke, L.C., Tran, M., Williams, D. and Whiteway, T., 2015. Outer Darwin Harbour Marine Survey 2015: GA0351/SOL6187 Post-survey report. Record 2016/008. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/Record.2016.008

  • This dataset contains seascape classification layer derived from bathymetry and backscatter, and their derivative from seabed mapping surveys in Darwin Harbour. The survey was undertaken during the period 24 June to 20 August 2011 by iXSurvey Australia Pty Ltd for the Department of Natural Resources, Environment, The Arts and Sport (NRETAS) in collaboration with Geoscience Australia (GA), the Darwin Port Corporation (DPC) and the Australian Institute of Marine Science (AIMS) using GA's Kongsberg EM3002D multibeam sonar system and DPC's vessel Matthew Flinders. The survey obtained detailed bathymetric map of Darwin Harbour. Refer to the GA record ' Mapping and Classification of Darwin Harbour Seabed' for further information on processing techniques applied (GeoCat: 79212; GA Record: 2015/xx)