greenhouse gas emissions
Type of resources
Keywords
Publication year
Scale
Topics
-
Eddy Covariance (EC) is considered a key atmospheric technique for quantifying CO2 leakage. However the complex and localised heterogeneity of a CO2 leak above the background environmental signal violates several of the critical assumptions made when implementing the EC technique, including: - That horizontal gradients in CO2 concentration are zero. - That horizontal and vertical gradients in the covariance of CO2 and orthogonal wind directions are zero. The ability of EC measurements of CO2 flux at the surface to provide information on the location and strength of CO2 leakage from below ground stores was tested during a 144 kg/day release event (27 March - 13 June 2012) at the Ginninderra controlled release facility. We show that the direction of the leak can be ascertained with some confidence although this depends on leak strength and distance from leak. Elevated CO2 levels are seen in the direction of the leakage area, however quantifying the emissions is confounded by the potential bias within each measurement through breaching of the assumptions underpinning the EC technique. The CO2 flux due to advection of the horizontal CO2 concentration gradients, thought to be the largest component of the error with the violation of the EC technique's assumptions, has been estimated using the modelling software Windtrax. The magnitude of the CO2 flux due to advection is then compared with the measured CO2 flux measured using the EC technique, to provide an initial assessment of the suitability of the EC technique to quantifying leakage source rates. Presented at the 2013 CO2CRC Research Symposium
-
This is a 5.48 minute long movie demonstrating Carbon Capture Technologies as one of the range of solutions that can help reduce greenhouse gas emissions. Using 3D Max animation we show how carbon dioxide is captured at the source of emissions (coal fired power stations for example), and permanently storing them deep underground. The movie has professional narration explaining the story, throughout.
-
A shallow vertical CO2 injection test was conducted over a 21 day period at the Ginninderra Controlled Release Facility in May 2011. The objective of this test was to determine the extent of lateral CO2 dispersion, breakthrough times and permeability of the soil present at the Ginninderra site. The facility is located in Canberra on the CSIRO agricultural Ginninderra Experiment Station. A 2.15m deep, 15cm stainless steel screened, soil gas sampling well was installed at the site and this was used as the CO2 injection well. The CO2 flow rate was 1.6 L/min (STP). CO2 soil effluxes (respiration and seepage) were measured continuously using a LICOR LI-8100A Automated Soil CO2 Flux System equipped with 5 accumulation chambers spaced 1m apart in a radial pattern from the injection well. These measurements were supplemented with CO2 flux spot measurements using a WestSystems portable fluxmeter. Breakthrough at 1m from the injection point occurred within 6 hrs of injection, 32hrs at 2m and after almost 5 days at 3m. The average steady state CO2 efflux was 85 ?mol/m2/s at 1m, 15 ?mol/m2/s at 2m and 5.0 ?mol/m2/s at 3m. The average background CO2 soil respiration efflux was 1.1 - 0.6 ?mol/m2/s. Under windy conditions, higher soil CO2 efflux could be expected due to pressure pumping but this is contrary to the observed results. Prolonged windy periods led to a reduction in the CO2 efflux, up to 30% lower than the typical steady state value.
-
No abstract available
-
Hot Rocks in Australia - National Outlook Hill, A.J.1, Goldstein, B.A1 and Budd, A.R.2 goldstein.barry@saugov.sa.gov.au hill.tonyj@saugov.sa.gov.au Petroleum & Geothermal Group, PIRSA Level 6, 101 Grenfell St.Adelaide SA 50001 Anthony.Budd@ga.gov.au Onshore Energy & Minerals Division, Geoscience Australia, GPO Box 378 Canberra ACT 26012 Abstract: Evidence of climate change and knowledge of enormous hot rock resources are factors stimulating growth in geothermal energy research, including exploration, proof-of-concept appraisals, and development of demonstration pilot plant projects in Australia. In the six years since the grant of the first Geothermal Exploration Licence (GEL) in Australia, 16 companies have joined the hunt for renewable and emissions-free geothermal energy resources in 120 licence application areas covering ~ 67,000 km2 in Australia. The associated work programs correspond to an investment of $570 million, and that tally excludes deployment projects assumed in the Energy Supply Association of Australia's scenario for 6.8% (~ 5.5 GWe) of Australia's base-load power coming from geothermal resources by 2030. Australia's geothermal resources fall into two categories: hydrothermal (from relatively hot groundwater) and the hot fractured rock i.e. Enhanced Geothermal Systems (EGS). Large-scale base-load electricity generation in Australia is expected to come predominantly from Enhanced Geothermal systems. Geologic factors that determine the extent of EGS plays can be generalised as: - source rock availability, in the form of radiogenic, high heat-flow basement rocks (mostly granites); - low thermal-conductivity insulating rocks overlying the source rocks, to provide thermal traps; - the presence of permeable fabrics within insulating and basement rocks, that can be enhanced to create heat-exchange reservoirs; and - a practical depth-range, limited by drilling and completion technologies (defining a base) and necessary heat exchange efficiency (defining a top). A national EGS resource assessment and a road-map for the commercialisation of Australia's EGSs are expected to be published in 2008. The poster will provide a synopsis of investment frameworks and geothermal energy projects underway and planned in Australia.
-
Australia has been making major progress towards early deployment of carbon capture and storage from natural gas processing and power generation sources. This paper will review, from the perspective of a government agency, the current state of various Australian initiatives and the advances in technical knowledge up until the 2010 GHGT conference. In November 2008, the Offshore Petroleum and Greenhouse Gas Storage Bill 2006 was passed by the Australian Parliament and established a legal framework to allow interested parties to explore for and evaluate storage potential in offshore sedimentary basins that lie in Australian Commonwealth waters. As a result of this Act, Australia became the first country in the world, in March 2009, to open exploration acreage for storage of greenhouse gases under a system that closely mirrors the well-established Offshore Petroleum Acreage Release. The ten offshore areas offered for geological storage assessment are significantly larger than their offshore petroleum counterparts to account for, and fully contain, the expected migration pathways of the injected GHG substances. The co-incidence of the 2009 Global Financial Crisis may have reduced the number of prospective CCS projects that were reported to be in the 'pipe-line' and the paper examines the implications of this apparent outcome. The Carbon Storage Taskforce has brought together both Australian governments technical experts to build a detailed assessment of the perceived storage potential of Australia's sedimentary basins. This evaluation has been based on existing data, both on and offshore. A pre-competitive exploration programme has also been compiled to address the identified data gaps and to acquire, with state funding, critical geological data which will be made freely available to encourage industrial participation in the search for commercial storage sites.
-
The first large-scale projects for geological storage of carbon dioxide on the Australian mainland are likely to occur within sedimentary sequences that underlie or are within the Triassic-Cretaceous, Great Artesian Basin (GAB) aquifer sequence. Recent national1 and state2 assessments have concluded that certain deep formations within the GAB show considerable geological suitability for the storage of greenhouse gases. These same formations contain trapped methane and naturally generated CO2 stored for millions of years. In July 2010, the Queensland government released exploration permits for Greenhouse Gas Storage in the Surat and Galilee basins.An important consideration in assessing the potential economic, environmental, health and safety risks of such projects is the potential impact CO2 migrating out of storage reservoirs could have on overlying groundwater resources. The risk and impact of CO2 migrating from a greenhouse gas storage reservoir into groundwater cannot be objectively assessed without knowledge of the natural baseline characteristics of the groundwater within these systems. Due to the phase behaviour of CO2, geological storage of carbon dioxide in the supercritical state requires depths greater than 800m, but there are few hydrogeochemical studies of these deeper aquifers in the prospective storage areas. Historical hydrogeochemical data are compiled from various State and Federal Government agencies. In addition, hydrogeochemical information is compiled from thousands of petroleum well completion reports in order to obtain more information on the deeper aquifers, not typically used for agriculture or human consumption. The data are passed through a QC procedure to check for mud contamination and to ascertain whether a representative sample had been collected. The large majority of the samples proved to be contaminated but a small selection passed the QC criteria. The full dataset is available for download from GA's Virtual Dataroom. Oral presentation at "Groundwater 2010" Conference, 31 October - 4 November 2010, Canberra
-
Deployment of Unmanned Aerial Vehicle during surface CO2 release experiments at the Ginninderra greenhouse gas controlled release facility H. Berko (CO2CRC, Geoscience Australia), F. Poppa (The Australian National University), U. Zimmer (The Australian National University) and A. Feitz (CO2CRC, Geoscience Australia) Lagrangian stochastic (LS) forward modelling of CO2 plumes from above-surface release experiments conducted at the GA-CO2CRC Ginninderra controlled release facility demonstrated that small surface leaks are likely to disperse rapidly and unlikely to be detected at heights greater 4 m; this was verified using a rotorcraft to map out the plume. The CO2 sensing rotorcraft unmanned aerial vehicle (RUAV) developed at the Australian National University, Canberra, is equipped with a CO2 sensor, a GPS, lidar and a communication module. It was developed to detect and locate CO2 gas leaks; and estimate CO2 concentration at the emission source. The choice of a rotor-craft UAV allows slower flight speeds compared to speeds of a fixed-wing UAV; and the electric powered motor enables flight times of 12 min. In experiments conducted at the Ginninderra controlled release facility, gaseous CO2 (100 kg per day) was released from a small diffuse source located in the middle of the paddock, and the RUAV was flown repeatedly over the CO2 source at a few meters height. Meteorological parameters measured continuously at the site at the time of the flight were input in the LS model. Mapped out horizontal and vertical CO2 concentrations established the need to be close to the ground in order to detect CO2 leakage using aerial techniques. Using the rotorcraft as a mobile sensor could be an expedient mechanism to detect plumes over large areas, and would be important for early detection of CO2 leaks arising from CCS activities.
-
Covering an area of approximately 247 000km2, the Galilee Basin is a significant feature of central Queensland. Three main depocentres contain several hundred metres of Late Carboniferous to Middle Triassic sediments. Sedimentation in the Galilee Basin was dominated by fluvial to lacustrine depositional systems. This resulted in a sequence of sandstones, mudstones, siltstones, coals and minor tuff in what was a relatively shallow intracratonic basin with little topographic relief. Forty years or more of exploration in the Galilee Basin has failed to discover any economic accumulations of hydrocarbons, despite the presence of apparently fair to very good reservoirs and seals in both the Permian and Triassic sequence. Despite some relatively large distances (upwards of 500km) between sources and sinks, previous and ongoing work on the Galilee Basin suggests that it has potential to sequester a significant amount of Queensland's carbon dioxide emissions. Potential reservoirs include the Early Permian Aramac Coal Measures, the Late Permian Colinlea Sandstone and the Middle Triassic Clematis Sandstone. These are sealed by several intraformational and local seals as well as the regional Triassic Moolayember Formation. With few suitable structural traps and little faulting throughout the Galilee sequence, residual trapping within saline reservoir is the most likely mechanism for storing CO2. The current study is aimed at building a sound geological model of the basin through activities such as detailed mapping, well correlation, and reservoir and seal analysis leading to reservoir simulations to gain a better understanding of the basin.
-
<p>Geoscience Australia in collaboration with the CO2CRC hosted three controlled subsurface release experiments of CO2 during 2012 to 2013 at an agricultural research station managed by CSIRO Plant Industry Canberra. The facility was designed to simulate surface emissions of CO2 and other greenhouse gases from the soil into the atmosphere, and has deployed a range of near-surface monitoring techniques in the pursuit of improving detection and quantification methods and technologies. This product, which encompasses 4 geodatabases, a metadata report and a data dictionary, presents all the data collected during the experiments from over 10 research organisations, and is made to use with GIS software. The intention of this data release is make the data available for comparison with measurements taken at other controlled release experiments, CO2 storage projects and natural analogues. This will hopefully facilitate the further development of greenhouse gas monitoring technologies, methods and monitoring strategies and increase our understanding of the migration behaviour and impact of near surface CO2 leakage. <p>The contents of each geodatabase/experiment is summarised below: <p>Release 1 (Feb-May 2012): <p>- Soil microbial data <p>- Soil chemistry <p>- Free air CO2 concentration <p>- Eddy covariance <p>- Groundwater chemistry <p>- Soil gas <p>- Krypton tracers <p>- EM31 <p>- Soil flux <p>Release 2 (Oct-Dec 2012): <p>- Groundwater chemistry <p>- EM31 <p>- EM38 <p>- Soil gas <p>- Soil flux <p>- Airborne hyperspectral <p>- Ground hyperspectral <p>Release 3 (Oct-Dec 2013): <p>- Mobile CO2 surveys <p>- Groundwater depth <p>- Eddy covariance <p>- Plant physiology and chemistry <p>- EM31 <p>- EM38 <p>- Soil gas <p>- Soil flux <p>- Airborne hyperspectral <p>All Releases: <p>- Aerial images <p>- Groundwater depths <p>- Meteorological data <p>Bibliographic reference: <p>Feitz, A.J., Schroder, I.F., Jenkins, C.J., Schacht, U., Zegelin, S., Berko, H., McGrath, A., Noble, R., Palu, T.J., George, S., Heath, C., Zhang, H., Sirault, X. and Jimenez-Berni, J. 2016. Ginninderra Controlled CO2 Release Facility Dataset 2012-2013. eCat 90078, Geoscience Australia and CO2CRC, Canberra. https://pid.geoscience.gov.au/dataset/ga/90078. <p>Digital Object Identifier: http://dx.doi.org/10.4225/25/5823c37333f9d