From 1 - 10 / 29
  • A short animation of an atmospheric simulation of methane emissions from a coal mine (produced using TAPM) compared to actual methane concentrations detected by the Atmospheric Monitoring Station, Arcturus in Central Queensland. It illustrates the effectiveness of both the detection and simulation techniques in the monitoring of atmospheric methane emissions. The animation shows a moving trace of both the simulated and actual recorded emissions data, along with windspeed and direction indicators. Some data provided by CSIRO Marine and Atmospheric Research.

  • The first large-scale projects for geological storage of carbon dioxide on the Australian mainland are likely to occur within sedimentary sequences that underlie or are within the Triassic-Cretaceous, Great Artesian Basin (GAB) aquifer sequence. Recent national1 and state2 assessments have concluded that certain deep formations within the GAB show considerable geological suitability for the storage of greenhouse gases. These same formations contain trapped methane and naturally generated CO2 stored for millions of years. In July 2010, the Queensland government released exploration permits for Greenhouse Gas Storage in the Surat and Galilee basins.An important consideration in assessing the potential economic, environmental, health and safety risks of such projects is the potential impact CO2 migrating out of storage reservoirs could have on overlying groundwater resources. The risk and impact of CO2 migrating from a greenhouse gas storage reservoir into groundwater cannot be objectively assessed without knowledge of the natural baseline characteristics of the groundwater within these systems. Due to the phase behaviour of CO2, geological storage of carbon dioxide in the supercritical state requires depths greater than 800m, but there are few hydrogeochemical studies of these deeper aquifers in the prospective storage areas. Historical hydrogeochemical data are compiled from various State and Federal Government agencies. In addition, hydrogeochemical information is compiled from thousands of petroleum well completion reports in order to obtain more information on the deeper aquifers, not typically used for agriculture or human consumption. The data are passed through a QC procedure to check for mud contamination and to ascertain whether a representative sample had been collected. The large majority of the samples proved to be contaminated but a small selection passed the QC criteria. The full dataset is available for download from GA's Virtual Dataroom. Oral presentation at "Groundwater 2010" Conference, 31 October - 4 November 2010, Canberra

  • Covering an area of approximately 247 000km2, the Galilee Basin is a significant feature of central Queensland. Three main depocentres contain several hundred metres of Late Carboniferous to Middle Triassic sediments. Sedimentation in the Galilee Basin was dominated by fluvial to lacustrine depositional systems. This resulted in a sequence of sandstones, mudstones, siltstones, coals and minor tuff in what was a relatively shallow intracratonic basin with little topographic relief. Forty years or more of exploration in the Galilee Basin has failed to discover any economic accumulations of hydrocarbons, despite the presence of apparently fair to very good reservoirs and seals in both the Permian and Triassic sequence. Despite some relatively large distances (upwards of 500km) between sources and sinks, previous and ongoing work on the Galilee Basin suggests that it has potential to sequester a significant amount of Queensland's carbon dioxide emissions. Potential reservoirs include the Early Permian Aramac Coal Measures, the Late Permian Colinlea Sandstone and the Middle Triassic Clematis Sandstone. These are sealed by several intraformational and local seals as well as the regional Triassic Moolayember Formation. With few suitable structural traps and little faulting throughout the Galilee sequence, residual trapping within saline reservoir is the most likely mechanism for storing CO2. The current study is aimed at building a sound geological model of the basin through activities such as detailed mapping, well correlation, and reservoir and seal analysis leading to reservoir simulations to gain a better understanding of the basin.

  • Approximately one quarter of Australia's CO2 emissions come from southeast and central Queensland. This poster presents the geoscientific interpretations which lead to constructing a simplified 3-D model of a potential geological storage site for CO2. The Bowen Basin is located in northeast Australia, approximately 200 to 500 km from major CO2 emission hubs in southeast Queensland. The resources of the Bowen Basin include coal, oil and gas, and there are water resources within the overlying Great Artesian Basin. Defining trap integrity within the Bowen Basin is important to ensure that none of these resources are compromised. The Wunger Ridge area has been the focus of petroleum exploration for hydrocarbons. Geological, geophysical, hydrodynamic, petrological, petrophysical and seal capacity interpretations of datasets from the area were undertaken. These interpretations indicate that the Triassic fluvial - deltaic Showgrounds Sandstone is the most suitable for CO2 storage and injection as it is permeable and saturated with brackish to saline water except where hydrocarbons have accumulated. Geological profiles were developed using sequence stratigraphic concepts and combined with rock properties, measured from core, to produce simplified 3-D models with the goal of assessing parameters for CO2 injection and migration. Simulation runs using simple models, based on a coarse-scale grid, suggest that either one horizontal or two vertical wells are required to inject at the proposed rate. Geological heterogeneity increases injection pressure around the wellbore and reduces injection rates compared to homogeneous models, resulting in the need for more injection wells.

  • Many industries and researchers have been examining ways of substantially reducing greenhouse gas emissions. No single method is likely to be a panacea, however some options do show considerable promise. Geological sequestration is one option that utilises mature technology and has the potential to sequester large volumes of CO2. In Australia geological sequestration has been the subject of research for the last 2? years within the Australian Petroleum Cooperative Research Centre's GEODISC program. A portfolio of potential geological sequestration sites (?sinks?) has been identified across all sedimentary basins in Australia, and these have been compared with nearby known or potential CO2 emission sources. These sources have been identified by incorporating detailed analysis of the national greenhouse gas emission databases with other publicly available data, a process that resulted in recognition of eight regional emission nodes. An earlier generic economic model for geological sequestration in Australia has been updated to accommodate the changes arising from this process of ?source to sink? matching. Preliminary findings have established the relative attractiveness of potential injection sites through a ranking approach. It includes the ability to accommodate the volumes of sequesterable greenhouse gas emissions predicted for the adjacent region, the costs involved in transport, sequestration and ongoing operations, and a variety of technical geological risks. Some nodes with high volumes of emissions and low sequestration costs clearly appear to be suitable, whilst others with technical and economic issues appear to be problematic. This assessment may require further refinement once findings are completed from the GEODISC site-specific research currently underway.

  • Having techniques available for the accurate quantification of potential CO2 surface leaks from geological storage sites is critical for regulators, public assurance and for underpinning carbon pricing mechanisms. Currently, there are few options available that enable accurate CO2 quantification of potential leaks at the soil-atmosphere interface. Integrated soil flux measurements can be used to quantify CO2 emission rates from the soil and atmospheric techniques such as eddy covariance or Lagrangian stochastic modelling have been used with some success to quantify CO2 emissions into the atmosphere from simulated surface leaks. The error for all of these techniques for determining the emission rate is not less than 10%. A new technique to quantify CO2 emissions was trialled at the CO2CRC Ginninderra controlled release site in Canberra. The technique, termed atmospheric tomography, used an array of sampling sites and a Bayesian inversion technique to simultaneously solve for the location and magnitude of a simulated CO2 leak. The technique requires knowledge of concentration enhancement downwind of the source and the normalized, three-dimensional distribution (shape) of concentration in the dispersion plume. Continuous measurements of turbulent wind and temperature statistics were used to model the dispersion plume.

  • This animation has been developed by Geoscience Australia to illustrate the carbon dioxide capture, transportation and storage process. Carbon capture and storage (CCS) is one of the technologies that we can use to reduce greenhouse gas emissions to the atmosphere, particularly from sources such as coal or natural gas fired power stations and industrial plants. In this process carbon dioxide (CO2) is captured at the source (e.g. power station), transported via pipeline and injected deep underground into a porous rock, such as sandstone. There it is trapped by the overlying fine grained and impermeable mud rocks.

  • Hot Rocks in Australia - National Outlook Hill, A.J.1, Goldstein, B.A1 and Budd, A.R.2 goldstein.barry@saugov.sa.gov.au hill.tonyj@saugov.sa.gov.au Petroleum & Geothermal Group, PIRSA Level 6, 101 Grenfell St.Adelaide SA 50001 Anthony.Budd@ga.gov.au Onshore Energy & Minerals Division, Geoscience Australia, GPO Box 378 Canberra ACT 26012 Abstract: Evidence of climate change and knowledge of enormous hot rock resources are factors stimulating growth in geothermal energy research, including exploration, proof-of-concept appraisals, and development of demonstration pilot plant projects in Australia. In the six years since the grant of the first Geothermal Exploration Licence (GEL) in Australia, 16 companies have joined the hunt for renewable and emissions-free geothermal energy resources in 120 licence application areas covering ~ 67,000 km2 in Australia. The associated work programs correspond to an investment of $570 million, and that tally excludes deployment projects assumed in the Energy Supply Association of Australia's scenario for 6.8% (~ 5.5 GWe) of Australia's base-load power coming from geothermal resources by 2030. Australia's geothermal resources fall into two categories: hydrothermal (from relatively hot groundwater) and the hot fractured rock i.e. Enhanced Geothermal Systems (EGS). Large-scale base-load electricity generation in Australia is expected to come predominantly from Enhanced Geothermal systems. Geologic factors that determine the extent of EGS plays can be generalised as: - source rock availability, in the form of radiogenic, high heat-flow basement rocks (mostly granites); - low thermal-conductivity insulating rocks overlying the source rocks, to provide thermal traps; - the presence of permeable fabrics within insulating and basement rocks, that can be enhanced to create heat-exchange reservoirs; and - a practical depth-range, limited by drilling and completion technologies (defining a base) and necessary heat exchange efficiency (defining a top). A national EGS resource assessment and a road-map for the commercialisation of Australia's EGSs are expected to be published in 2008. The poster will provide a synopsis of investment frameworks and geothermal energy projects underway and planned in Australia.

  • No abstract available

  • Note: A more recent version of this product is available. This point dataset contains the major power stations in Australia including all those that feed into the electricity transmission network.