From 1 - 10 / 103
  • In 2011 as part of the National CO2 Infrastructure Plan (NCIP), Geoscience Australia started a three year project to provide new pre-competitive data and a more detailed assessment of the Vlaming Sub-basin prospectivity for the storage of CO2. Initial assessment by Causebrook 2006 of this basin identified Gage Sandstone and South Perth Shale (SPS) formations as the main reservoir/seal pair suitable for long-term storage of CO2. SPS is a thick (1900 m) deltaic succession with highly variable lithologies. It was estimated that the SPS is capable of holding a column of CO2 of up to 663m based on 6 MICP tests (Causebrook, 2006). The current study found that sealing capacity of the SPS varies considerably across the basin depending on what part of the SPS Supersequence is present at that location. Applying a sequence-stratigraphic approach, the distribution of mudstone facies within the SPS Supersequence, was mapped across the basin. This facies is the effective sub-regional seal of the SPS. Analysis of the spatial distribution and thickness of the effective seal is used for characterisation of the containment potential in the Vlaming Sub-basin CO2 storage assessment.

  • Introduction This National Carbon Infrastructure Plan study assesses the suitability of the Vlaming Sub-basin for CO2 storage. The Vlaming Sub-basin is a Mesozoic depocentre within the offshore southern Perth Basin, Western Australia (Figure 1). It is around 23,000 km2 and contains up to 14 km of sediments. The Early Cretaceous Gage Sandstone was deposited in paleo-topographic lows of the Valanginian breakup unconformity and is overlain by the South Perth Shale regional seal. Together, these formations are the most prospective reservoir/seal pair for CO2 storage. The Gage Sandstone reservoir has porosities of 23-30% and permeabilities of 200-1800 mD. It lies mostly from 1000 - 3000 m below the seafloor, which is suitable for injection of supercritical CO2 and makes it an attractive target as a long-term storage reservoir. Methods & datasets To characterise the Gage reservoir, a detailed sequence stratigraphic analysis was conducted integrating 2D seismic interpretation, well log analysis and new biostratigraphic data (MacPhail, 2012). Paleogeographic reconstructions of components of the Gage Lowstand Systems Tract (LST) are based on seismic facies mapping, and well log and seismic interpretations. Results The Gage reservoir is a low stand systems tract that largely coincides with the Gage Sandstone and is defined by the presence of the lower G. mutabilis dinoflagellate zone. A palynological review of 6 wells led to a significant revision, at the local scale, of the Valanginian Unconformity and the extent of the G. mutabilis dinoflagellate zones (MacPhail, 2012). G. mutabilis dinoflagellates were originally deposited in lagoonal (or similar) environments and were subsequently redeposited in a restricted marine environment via mass transport flows. Mapping of the shelf break indicates that the Gage LST was deposited in water depths of >400 m. Intersected in 8 wells, the Gage LST forms part of a sand-rich submarine fan system (Figure 2) that includes channelized turbidites, low stand fan deposits, debris flows (Table 1). This interpretation is broadly consistent with Spring & Newell (1993) and Causebrook (2006). The Gage LST is thickest (up to 360 m) at the mouth of large canyons adjacent to the Badaminna Fault Zone (BFZ) and on the undulating basin plain west of Warnbro 1 (Figure 1). Paleogeographic maps depict the evolution of the submarine fan system (Figure 3). Sediment transport directions feeding the Gage LST are complex. Unit A is sourced from the northern canyon (Figure 3a). Subsequently, Unit B (Figure 3b) derived sediment from multiple directions including incised canyons adjacent to BFZ and E-W oriented canyons eroding into the Badaminna high. These coalesce on an undulating basin plain west of Warnbro 1. Minor additional input for the uppermost Unit C (Figure 3c) is derived from sources near Challenger 1. Summary 1: The Gage LST is an Early Cretaceous submarine fan system that began deposition during the G. mutabilis dinoflagellate zone. It ranges from confined canyon fill to outer fan deposits on an undulating basin plain. 2: The 3 units within the Gage LST show multidirectional sediment sources. The dominant supply is via large canyons running north-south adjacent to the Badaminna Fault Zone. 3: Seismic facies interpretations and palaeogeographic mapping show that the best quality reservoirs for potential CO2 storage are located in the outer fan (Unit C sub-unit 3) and the mounded canyon fill (Unit A). These are more likely to be laterally connected. 4: The defined units and palaeogeographic maps will be used in a regional reservoir model to estimate the storage capacity of the Gage LST reservoir.

  • As part of the National CO2 Infrastructure Plan (NCIP) Geoscience Australia is undertaking evaluation of the Gage Sandstone and the overlying South Perth Shale for the long-term storage of CO2. Initial assessment of the seismic data identified widespread fault reactivation and seismic anomalies potentially indicating hydrocarbon seepage. Some of the seismic anomalies clearly correlate with reactivated faults, but not all of them. The study highlights the importance of developing a detailed understanding of spatial variability in seal quality and history of fault reactivation both for petroleum exploration and CO2 storage assessments.

  • In the 2011/12 Budget, the Australian Government announced funding of a four year National CO2 Infrastructure Plan (NCIP) to accelerate the identification and development of suitable long term CO2 storage sites, within reasonable distances of major energy and industrial emission sources. The NCIP funding follows on from funding announced earlier in 2011 from the Carbon Storage Taskforce through the National Carbon Mapping and Infrastructure Plan and previous funding recommended by the former National Low Emissions Coal Council. Four offshore sedimentary basins and several onshore basins have been identified for study and pre-competitive data acquisition.

  • Phase two of the China Australia Geological Storage of CO2 (CAGS2) project aimed to build on the success of the previous CAGS project and promote capacity building, training opportunities and share expertise on the geological storage of CO2. The project was led by Geoscience Australia (GA) and China's Ministry of Science and Technology (MOST) through the Administrative Centre for China's Agenda 21 (ACCA21). CAGS2 has successfully completed all planned activities including three workshops, two carbon capture and storage (CCS) training schools, five research projects focusing on different aspects of the geological storage of CO2, and ten researcher exchanges to China and Australia. The project received favourable feedback from project partners and participants in CAGS activities and there is a strong desire from the Chinese government and Chinese researchers to continue the collaboration. The project can be considered a highly successful demonstration of bi-lateral cooperation between the Australian and Chinese governments. Through the technical workshops, training schools, exchange programs, and research projects, CAGS2 has facilitated and supported on-going collaboration between many research institutions and industry in Australia and China. More than 150 experts, young researchers and college students, from over 30 organisations, participated in CAGS2. The opportunity to interact with Australian and international experts at CAGS hosted workshops and schools was appreciated by the participants, many of whom do not get the opportunity to attend international conferences. Feedback from a CAGS impact survey found that the workshops and schools inspired many researchers and students to pursue geological storage research. The scientific exchanges proved effective and often fostered further engagement between Chinese and Australian researchers and their host organisations. The research projects often acted as a catalyst for attracting additional CCS funding (at least A$700,000), including two projects funded under the China Clean Development Mechanism Fund. CAGS sponsored research led to reports, international conference presentations, and Chinese and international journal papers. CAGS has established a network of key CCS/CCUS (carbon capture, utilisation and storage) researchers in China and Australia. This is exemplified by the fact that 4 of the 6 experts that provided input on the 'storage section' of the 12th Five-Year plan for Scientific and Technological Development of Carbon Capture, Utilization and Storage, which laid out the technical policy priorities for R&D and demonstration of CCUS technology in China, were CAGS affiliated researchers. The contributions of CAGS to China's capacity building and policy CCUS has been acknowledged by the Chinese Government. CAGS support of young Chinese researchers is particularly noted and well regarded. Letters have been sent to the Secretary of the Department of Industry and Science and to the Deputy CEO of Geoscience Australia, expressing China's gratitude for the Australian Government's support and GA's cooperation in the CAGS project.

  • This GHGT-12 conference paper hightlights some results of GA's work on "Regional assessment of the CO2 storage potential of the Mesozoic sucession in the Petrel Sub-basin, Northern Territory, Australia. Record 2014/11".

  • The Vlaming Sub-basin Marine Survey GA-0334 was undertaken in March and April 2012 as part of the Commonwealth Government's National CO2 Infrastructure Plan (NCIP). The purpose was to acquire geophysical and biophysical data to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. This dataset contains identifications of animals collected from 32 Van Veen grabs deployed during GA-0334. Sediment was elutriated for ~ 5 minutes over a 500um sieve. Retained sediments and animals were then preserved in 70% ethanol for later laboratory sorting and identification (see `lineage'). During sorting, all worms were separated and sent to Infaunal Data Pty Ltd (Lynda Avery) for identification to species or operational taxonomic unit (OTU). Lynda Avery completed identifications on 17 April 2013, and specimens were lodged at the Museum of Victoria. All other taxa were identified to morphospecies at GA by an ecologist. Gray shading indicates taxa identified to species level by Lynda Avery (Refer to GeoCat # 76463 for raw data of species identifications by taxonomist); all other taxa were identified to morphospecies. Data is presented here exactly as delivered by the taxonomist/ecologist, and Geoscience Australia is unable to verify the accuracy of the taxonomic identifications. Stations are named XXGRYY where XX indicates the station number, GR indicates Van Veen grabs, and YY indicates the sequence of grabs deployed (i.e. the YYth grab on the entire survey). H indicates heavy fraction animals and HS indicates animals found on a sponge. The dataset is current as of November 2014, but will be updated as taxonomic experts contribute. See GA Record 2013/09 for further details on survey methods and specimen acquisition.

  • Geoscience Australia is investigating the suitability of offshore sedimentary basins as potential CO2 storage sites. In May 2012 a seabed survey (GA0335/SOL5463) was undertaken in collaboration with the Australian Institute of Marine Science to acquire baseline marine data in the Petrel Sub-basin, Joseph Bonaparte Gulf. The aim was to collect information on possible connections (faults and fluid pathways) between the seabed and key basin units, and to characterise seabed habitats and biota. Two areas were surveyed (Area 1: 471 km2, depth ~ 80-100 m; Area 2: 181 km2, depth ~ 30-70 m), chosen to investigate the seabed over the potential supercritical CO2 boundary (Area 1) and the basin margin (Area 2), with Area 2 located around Flat Top 1 Well. Data analysed include multibeam sonar bathymetry and backscatter, seabed samples and their geochemical and biological properties, video footage and still images of seabed habitats and biota, and acoustic sub-bottom profiles. Pockmarks, providing evidence for fluid release, are present at the seabed, and are particularly numerous in Area 1. Area 1 is part of a sediment-starved, low-relief section of shelf characterised by seabed plains, relict estuarine paleochannels, and low-lying ridges. Facies analysis and radiocarbon dating of relict coastal plain sediment indicates Area 1 was a mangrove-rich environment around 15,500 years ago, transgressed near the end of the Last Glacial period (Meltwater Pulse 1A). Modern seabed habitats have developed on these relict geomorphic features, which have been little modified by recent seabed processes. Seabed habitats include areas of barren and bioturbated sediments, and mixed patches of sponges and octocorals on hardgrounds. In the sub-surface, stacked sequences of northwest-dipping to flat-lying, well-stratified sediments, variably incised by palaeochannels characterise the shallow geology of Area 1. Some shallow faulting through these deposits was noted, but direct linkages between seabed features and deep-seated faults were not observed. Area 2 is dominated by carbonate banks and ridges. Low-lying ridges, terraces and plains are commonly overlain by hummocky sediment of uncertain origin. Pockmarks are present on the margins of banks, and on and adjacent to ridges. Despite the co-location of banks and ridges with major faults at depth, there is a lack of direct evidence for structural connectivity, particularly because of significant acoustic masking in the sub-surface profiles of Area 2. While no direct structural relationship was observed in the acoustic sub-bottom profiles between these banks, ridges and faults visible in the basin seismic profiles, some faults extend through the upper basin units towards the seabed on the margin of Area 2. No evidence was detected at the seabed for the presence of thermogenic hydrocarbons or other fluids sourced from the basin, including beneath the CO2 supercritical boundary. The source of fluids driving pockmark formation in Area 1 is most likely decomposing mangrove-rich organic matter within late Pleistocene estuarine sediments. The gas generated is dominated by CO2. Additional fluids are potentially derived from sediment compaction and dewatering. Conceptual models derived from this are being used to inform regional-scale assessments of CO2 storage prospectivity in the Petrel Sub-basin.

  • Questions often asked by the public in regard to the concept of CO2 storage include; "But won?t it leak?", and "How long will it stay down there?". The natural environment of petroleum systems documents many of the processes which will influence CO2 storage outcomes, and the likely long (geological) timeframes that will operate. Thousand of billions of barrels of hydrocarbons have been trapped and stored in geological formations in sedimentary basins for 10s to 100s of millions of years, as has substantial volumes of CO2 that has been generated through natural processes. Examples from Australia and major hydrocarbon provinces of the world are documented, including those basins with major accumulations that are currently trapped in their primary reservoir, those that have accumulated hydrocarbons in the primary reservoir and then through tectonic activity spilled them to other secondary traps or released the hydrocarbons to the atmosphere, and those that generated hydrocarbons but for which no effective traps were in place for hydrocarbons to accumulate. Some theoretical modelling of the likelihood of meeting stabilisation targets using geological storage are based on leakage rates which are implausibly high when compared to observations from viable storage locations in the natural environment, and do not necessarily account for the likelihood of delay times for leakage to the atmosphere or the timeframe in which geological events will occur. Without appropriate caveats, they potentially place at risk the public perception of how efficient and effective appropriately selected geological reservoirs could be for storage of CO2. If the same rigorous methods, technology and skills that are used to explore for, find and produce hydrocarbon accumulations are now used for finding safe and secure storage sites for CO2, the traps so identified can be expected to contain the CO2 after injection for similar periods of time as that in which hydrocarbons and CO2 have been stored in the natural environment.

  • Identification of major hydrocarbon provinces from existing world assessments for hydrocarbon potential can be used to identify those sedimentary basins at a global level that will be highly prospective for CO2 storage. Most sedimentary basins which are minor petroleum provinces and many non-petroliferous sedimentary basins will also be prospective for CO2 storage. Accurate storage potential estimates will require that each basin be assessed individually, but many of the prospective basins may have ranges from high to low prospectivity. The degree to which geological storage of CO2 will be implemented in the future will depend on the geographical and technical relationships between emission sites and storage locations, and the economic drivers that affect the implementation for each source to sink match. CO2 storage potential is a naturally occurring resource, and like any other natural resource there will be a need to provide regional access to the better sites if the full potential of the technology is to be realized. Whilst some regions of the world have a paucity of opportunities in their immediate geographic confines, others are well endowed. Some areas whilst having good storage potential in their local region may be challenged by the enormous volume of CO2 emissions that are locally generated. Hubs which centralize the collection and transport of CO2 in a region could encourage the building of longer and larger pipelines to larger and technically more viable storage sites and so reduce costs due to economies of scale.