From 1 - 10 / 394
  • Categories  

    Gravity data measures small changes in gravity due to changes in the density of rocks beneath the Earth's surface. The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This South Hobart Detailed Gravity (P196459) contains a total of 25 point data values acquired at a spacing between 100 and 200 metres. The data is located in TAS and were acquired in 1964, under project No. 196459 for Leaman, D..

  • Categories  

    Gravity data measures small changes in gravity due to changes in the density of rocks beneath the Earth's surface. The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Central Tasmania 2000 (P200051) contains a total of 755 point data values acquired at a spacing between 500 and 3000 metres. The data is located in TAS and were acquired in 2000, under project No. 200051 for Great South Land Minerals.

  • Categories  

    Gravity data measures small changes in gravity due to changes in the density of rocks beneath the Earth's surface. The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Scottsdale Detailed (NETAS) (P197050) contains a total of 485 point data values acquired at a spacing between 400 and 2000 metres. The data is located in TAS and were acquired in 1970, under project No. 197050 for University of Tasmania.

  • Categories  

    Gravity data measures small changes in gravity due to changes in the density of rocks beneath the Earth's surface. The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Tasmanian Gravity Data (P199052) contains a total of 1188 point data values acquired at a spacing between 100 and 400 metres. The data is located in TAS and were acquired in 1990, under project No. 199052 for None.

  • Categories  

    Gravity data measures small changes in gravity due to changes in the density of rocks beneath the Earth's surface. The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Tasmanian Gravity Data (P198850) contains a total of 891 point data values acquired at a spacing of 50 metres. The data is located in TAS and were acquired in 1988, under project No. 198850 for None.

  • Categories  

    Gravity data measures small changes in gravity due to changes in the density of rocks beneath the Earth's surface. The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Tasmanian Gravity Data (P198851) contains a total of 1803 point data values acquired at a spacing between 500 and 1500 metres. The data is located in TAS and were acquired in 1988, under project No. 198851 for None.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This North-East Tasmania, Tas, 2007 (P1143), radiometric line data, AWAGS levelled were acquired in 2007 by the TAS Government, and consisted of 51969 line-kilometres of data at 200m line spacing and 60m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This King Island, Tas, 1987 (P543), radiometric line data, AWAGS levelled were acquired in 1987 by the TAS Government, and consisted of 1700 line-kilometres of data at 1500m line spacing and 150m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. These line dataset from the Strathblane and Catamaran, Tas, 1982 survey were acquired in 1982 by the TAS Government, and consisted of 1511 line-kilometres of data at 500m line spacing and 135m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This MRTAS Mt Lloyd tmi grid geodetic has a cell size of 0.00051 degrees (approximately 49m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 1982 by the TAS Government, and consisted of 774 line-kilometres of data at 500m line spacing and 175m terrain clearance.