From 1 - 10 / 119
  • The Landsat series of satellites commenced acquiring remotely sensed data with the launch of Landsat 1 in 1972. Landsat satellites travel at an altitude of 705 kilometres and provide coverage of the entire globe every 16 days. Landsat 7, launched on 15 April 1999, carries the Enhanced Thematic Mapper Plus (ETM+). As the name suggests, the ETM+ sensor is similar to the TM sensor but has some added features. It provides imagery in the same seven spectral bands as the TM sensor with 30 metre resolution, but has an added panchromatic band with 15 metre pixel resolution. ETM+ also has an enhanced thermal band with a 60 metre resolution. Its ground swath is 185 kilometres. A full scene is approximately 184 kilometres by 172 kilometres. The archive of ACRES products includes ETM+ data from 6 July 1999 onwards.

  • Geoscience Australia's entry to the ASC2014 SPECTRUM science-art exhibition Title: Seeing Water Through Time Author: Norman Mueller Type: Science Communication image Description: The WOfS, Water Observations from Space, image is a colour-scale of how many times water was detected from the Landsat 5 and 7 satellites over central Australia from 1998 to 2012. The colours range from very low number of times (red) to very high number of times (blue), using a standard rainbow colour scheme (red-orange-yellow-green-blue). This means that red areas are hardly ever wet while blue areas are more permanent water features like lakes. The area covered includes Lake Eyre (at left) Cooper Creek (right of centre) to the Paroo River (bottom right).

  • This is a proof of concept web service displaying trial samples of historic flood mapping from satellite. Over the next 2 years this service will be developed into a nationwide portal displaying flooding across Australia as observed by satellite since 1987. The service shows a summary of water observed by the Landsat-5 and MODIS satellites across Australia for periods between 2000 and 2012. The first layer set displays national observed water from MODIS fvrom 2000 to 2012, as derived by Geoscience Australia using an automated flood mapping algorithm. The colouring of the display represents the frequency of observed water in a 500 x 500m grid. The higher the number, the more often water was observed by the satellites over the period. This means that floods have low values, while lakes, dams and other permanent water bodies have high values. The three additional layer sets are study areas demonstrating the water observed in each study area by the Landsat-5 satellite, as derived by Geoscience Australia using an automated flood mapping algorithm. The study areas and the observation periods are: Study Area 1, Condamine River system between Condamine and Chinchilla, Qld, observed between 2006 and 2011 Study Area 2, North-west Victorian rivers between Shepparton and Kerang, observed between 2006 and 2011 Study Area 3, Northern Qld rivers, near Normanton, observed between 2003 and 2011 Each Study Area layer set includes a water summary displaying the frequency of observed water in 25 x 25m grids, plus individual flood extents for specific dates where flooding was observed. Similar to the national, MODIS summary, the higher the value, the more often water was observed by the satellites over the period. Limitations of the Information The automated flood mapping algorithm can confuse cloud shadows and snow with flood water, so some areas shown as water may be incorrect. This is a proof of concept dataset and has not been validated.

  • Wetlands provide a wide range of ecosystem services including improving water quality, carbon sequestration, as well as providing habitat for fish, amphibians, reptiles and birds. Managing wetlands in Australia is challenging due to competing pressures for water availability and highly variable climatic settings. The Wetlands Insight Tool (QLD) has been developed to provide catchment managers, environmental water holders, and wetlands scientists a consistent historical baseline of wetlands dynamics from 1987 onwards. The Wetlands Insight Tool (QLD) is available online through the Queensland Government Wetland What this product offers The Wetlands Insight Tool (QLD) summarises how the amount of water, green vegetation, dry vegetation and bare soil varies over time within each wetland. It provides the user with the ability to compare how the wetland is behaving now with how it has behaved in the past. This allows users to identify how changes in water availability have affected the wetland. It achieves this by presenting a combined view of Water Observations from Space, Tasseled Cap Wetness and Fractional Cover measurements from the Landsat series of satellites, summarised as a stacked line plot to show how that wetland has changed over time.

  • Geoscience Australia, ACRES distribute Landsat Multispectral Scanner (MSS), Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data for a series of epochs or time frames covering Australia. The first epoch is 1972. These data have been produced and provided by the Australian Greenhouse Office (AGO). AGO use the data in their National Carbon Accounting System for monitoring land clearing and revegetation. This data is only available through ACRES and ACRES Landsat Distributors, and not through the AGO. More information is available at <a href="http://www.ga.gov.au/acres/prod_ser/agosuite.jsp">http://www.ga.gov.au/acres/prod_ser/agosuite.jsp</a> This data is available in 1:1M tiles or as a full continental Mosaic. Tiles areas are available at: <a href="http://www.ga.gov.au/acres/prod_ser/agotilemap.jsp">http://www.ga.gov.au/acres/prod_ser/agotilemap.jsp</a>

  • Includes copy of AGSO Record 1997/20

  • Includes copy of AGSO Record 1997/20

  • Includes copy of AGSO Record 1997/20

  • Pixel Quality Assessment describes the results of a number of quality tests which are used to determine the quality of a Landsat image product in terms of, pixel saturation, pixel contiguity between spectral bands, whether the pixel is over land or sea, cloud contamination, cloud shadow and topographic shadow. Pixel Quality is used to filter an input Landsat image for downstream processing in a production workflow. It has general applicability to a number of image processing scenarios.

  • No abstract available