CO2 capture
Type of resources
Keywords
Publication year
Scale
Topics
-
There remains considerable uncertainty regarding the location, timing and availability of CO2 storage sites in both southeast Queensland and New South Wales. In New South Wales, the main issues relate to the lack of recent or reliable valid geological information that would permit a complete and comprehensive evaluation. Some sedimentary basins appear to contain potential storage reservoirs although they have low permeabilities, and are therefore likely to have low injection rates. In southeast Queensland, recent work has indicated that in some parts of the Bowen and Surat basins CO2 storage is likely to compete with other resources such as groundwater and hydrocarbons. However, current research on the potential storage in deeper saline formations in the southern and western Bowen Basin has provided encouraging results. Storage in deeper stratigraphic units in the central western part of the basin will rely on injection in low permeability formations, and more correlation work is required to define generally narrow storage targets. The Wunger Ridge, in the southern Bowen Basin, however, has promise with both significant storage potential and relatively low geological risk. One area in which there is some potential in both New South Wales and southeast Queensland is CO2 storage in coal seams, as close technical and economic relationships exist between coal bed methane (CBM) field development and operations and CO2 storage. Substantial collaborative research is still required in this area and is currently a focus of the CO2CRC activities
-
Initial 2D seismic survey using mini-vibroseis with high frequency band 10 - 150Hz. This seismic survey is part of the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) projects.
-
The greater Eromanga Basin is an intracratonic Mesozoic basin covering an area approximately 2,000,000 km2 in central and eastern Australia. The greater Eromanga Basin encompasses three correlated basins: the Eromanga Basin (central and western regions), Surat Basin (eastern region) and the Carpentaria Basin (northern region). The greater Eromanga Basin hosts Australia's largest known reserves of groundwater and onshore hydrocarbons and also contains extensive geothermal and uranium systems. The basin has also demonstrated potential as a greenhouse gas sequestration site and will likely play an intrinsic role in securing Australia's energy future. A 3D geological map has been constructed for the greater Eromanga Basin using publicly available datasets. These are principally compiled drilling datasets (i.e. water bores; mineral and petroleum exploration wells) and 1:1,000,000 scale surface geology map of Australia. Geophysical wireline logs, hydrochemistry and radiometrics datasets were also integrated into the 3D geological map
-
We present a probabilistic tectonic hazard analysis of a site in the Otway Basin,Victoria, Australia, as part of the CO2CRC Otway Project for CO2 storage risk. The study involves estimating the likelihood of future strong earthquake shaking and associated fault displacements from natural tectonic processes that could adversely impact the storage process at the site. Three datasets are used to quantify the tectonic hazards at the site: (1) active faults; (2) historical seismicity, and; (3) GPS surface velocities. Our analysis of GPS data reveals strain rates at the limit of detectability and not significantly different from zero. Consequently, we do not develop a GPS-based source model for this Otway Basin model. We construct logic trees to capture epistemic uncertainty in both the fault and seismicity source parameters, and in the ground motion prediction. A new feature for seismic hazard modelling in Australia, and rarely dealt with in low-seismicity regions elsewhere, is the treatment of fault episodicity (long-term activity versus inactivity) in the Otway model. Seismic hazard curves for the combined (fault and distributed seismicity) source model show that hazard is generally low, with peak ground acceleration estimates of less than 0.1g at annual probabilities of 10-3-10-4/yr. The annual probability for tectonic displacements of greater than or equal to 1m at the site is even lower, in the vicinity of 10-8-10-9/yr. The low hazard is consistent with the intraplate tectonic setting of the region, and unlikely to pose a significant hazard for CO2 containment and infrastructure.
-
The CO2CRC Otway Project in southwestern Victoria is the Australian flagship for geological storage of CO2. Phase 1 of the project involved the injection of a CO2-rich supercritical fluid into a depleted natural gas field at a depth of ~2 km. The project reached a major milestone late last year with the cessation of injection and the emplacement of around 65,000 tonnes of the supercritical fluid. Phase 2 of the project is set to commence in early 2011 with the injection a few 100 tonnes of pure CO2 into a saline aquifer at ~1.5 km depth. Critical to the project was the drilling of the CRC-1 and CRC-2 wells, with both being used as injection wells. During drilling of each well, fluorescein dye was added to the drilling mud with the intention to maintain a concentration of 5 ppm w/v. The role of fluorescein was to 1) quantitated the degree of drilling fluid contamination that may accompany autochonthous formation waters recovered with the multiple dynamic testing (MDT) tool, and 2) provide a measure of the depth of drilling mud penetration into the recovered cores in order to provide pristine material for microbiological studies.
-
A study of the geological prospectivity for carbon dioxide subsurface storage in selected member economies of the APEC (Asia-Pacific Economic Cooperation) region was recently completed. The study is part of a multi-phase program of the APEC Energy Working Group to promote sustainable energy development within the APEC community. APEC economies considered in this study including the Republic of Korea, China, Indonesia, Malaysia, Philippines, Chinese Taipei and Thailand. The objective of the study is to establish a sound understanding of the relationship between the key emission sources and the prospective basins that may contain potential storage sites, and to derive a qualitative assessment of whether the storage potential available in a specific country will meet its storage requirements through the foreseeable future. China has very high emissions and moderate to high prospectivity for storage and Indonesia, Malaysia and Thailand have moderate emissions and moderate storage prospectivity. The Philippines have low emissions and low storage prospectivity, whereas the Republic of Korea and Chinese Taipei both have high emissions and low storage prospectivity.
-
Geoscience Australia undertook a marine survey of the Leveque Shelf (survey number SOL5754/GA0340), a sub-basin of the Browse Basin, in May 2013. This survey provides seabed and shallow geological information to support an assessment of the CO2 storage potential of the Browse sedimentary basin. The basin, located on the Northwest Shelf, Western Australia, was previously identified by the Carbon Storage Taskforce (2009) as potentially suitable for CO2 storage. The survey was undertaken under the Australian Government's National CO2 Infrastructure Plan (NCIP) to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. The principal aim of the Leveque Shelf marine survey was to look for evidence of any past or current gas or fluid seepage at the seabed, and to determine whether these features are related to structures (e.g. faults) in the Leveque Shelf area that may extend to the seabed. The survey also mapped seabed habitats and biota to provide information on communities and biophysical features that may be associated with seepage. This research, combined with deeper geological studies undertaken concurrently, addresses key questions on the potential for containment of CO2 in the basin's proposed CO2 storage unit, i.e. the basal sedimentary section (Late Jurassic and Early Cretaceous), and the regional integrity of the Jamieson Formation (the seal unit overlying the main reservoir).
-
The CO2CRC Otway Project is Australia's first demonstration of geological storage of CO2 within deep underground reservoirs. The project has undergone many phases of implementation and the latest work program, Phase 2C, is aimed at injecting between 10,000 and 30,000 tonnes of CO2 into the saline Paraatte Formation located around 1,400m below surface. One of the key measures of success for Phase 2C is successful seismic detection of the injected gas stream. The geophysics team from Curtin University of Technology have previously conducted three 3D surface seismic surveys, and numerous smaller experiments, at the Otway CO2 re-injection site. These tests were completed during Phase 1 of the Otway Project whereby an (80-20%) CO2-CH4 gas mixture was re-injected into the depleted Warre-C gas reservoir. The feasibility of seismic monitoring of the CO2-CH4 gas mixture injected into the Paraatte Formation is expected to be improved over the Warre-C reservoir due to the increased fluid property contrast between brine and the CO2-CH4 mixture and the shallower depth of the reservoir. A comprehensive desktop feasibility study has been completed by the Curtin/CSIRO geophysics team to assess the probability of successful seismic detection and the preliminary results are encouraging. A Seismic Assurance Review workshop was completed incorporating seismic expertise from both academia and industry to assess the risk of unsuccessful seismic detection. The workshop was held on the 3rd and 4th of November, 2011, at Curtin University of Technology.
-
Australia's coal-based power-stations produce about 70% of its energy needs and consequently have led, to the adoption of a multi-disciplinary approach to instigating low emission technologies, which include CO2 capture, injection and storage. The onshore Bowen Basin could provide potential multi-scale storage site projects. Storage potential was demonstrated within a 256 square kilometer area on the eastern flank of the 60-km by 20-km Wunger Ridge using a regional model pertaining to a potential commercial-scale 200 megawatt power-station with emission/injection rates of 1.2 million ton/year. Palaeogeography interpretations of the targeted reservoir indicate a dominantly meandering channel system with permeabilities of up to 1 darcy on the ridge's eastern flank, waning to a deltaic system downdip. Seismic interpretation indicates a relatively unfaulted reservoir-to-seal section on the flank with low-relief structures. Depth to reservoir ranges from 2100 to 2700-m. Simulation from a simplified 3-D block model indicates at least two vertical wells are needed to inject at 1.2 million ton/year in permeabilities of 1 darcy, and reservoir thicknesses of about 5-m. The presence of intra-reservoir baffles reduces the injection rate possible, with a subsequent increase in the number of wells required to maintain the project injection rate, also true for a low-permeability trapping scenario. Long-term storage of acceptable volumes would involve intra-reservoir baffle, stratigraphic, residual, and potentially depleted field trapping scenarios along a 10 to 15-km migration route. Trapping success is ultimately a function of optimal reservoir characteristics both estimated from more complex modeling and, ultimately, collection of infill seismic and new wells.
-
The Petrel Sub-basin Marine Survey GA-0335 (SOL5463) was acquired by the RV Solander during May 2012 as part of the Commonwealth Government's National Low Emission Coal Initiative (NLECI). The survey was undertaken as a collaboration between the Australian Institute of Marine Science (AIMS) and GA. The purpose was to acquire geophysical and biophysical data on shallow (less then 100m water depth) seabed environments within two targeted areas in the Petrel Sub-basin to support investigation for CO2 storage potential in these areas. The survey mapped two targeted areas of the Petrel-Sub-basin located within the Ptrl-01 2009 Greenhouse Gas acreage release area (now closed). Data acquired onboard the AIMS research vessel, Solander included multibeam sonar bathymetry (471.2 km2 in Area 1 and 181.1 km2 in Area 2) to enable geomorphic mapping, and multi-channel sub-bottom profiles (558 line-kilometres in Area 1 and 97 line-kilometres in Area 2) to investigate possible fluid pathways in the shallow subsurface geology. Sampling sites covering a range of seabed features were identified from the preliminary analysis of multibeam bathymetry and shallow seismic reflection data. Sampling equipment deployed during the survey included surface sediment grabs, vibrocores, towed underwater video, conductivity-temperature-depth (CTD) profilers and ocean moorings. A total of 14 stations were examined in Area 1 (the priority study area) and one station in Area 2. This report provides a comprehensive overview of the survey activities and preliminary results from survey SOL5463. Detailed analyses and interpretation of the data acquired during the survey will be integrated with new and existing seismic data. This new information will support the regional assessment of CO2 storage prospectivity in the Petrel Sub-basin and contribute to the nation's knowledge of its marine environmental assets.