risk
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
FIRE-DST is the largest of the projects within the extended Bushfire Cooperative Research Centre (BCRC). It is addressing the sub-theme of evaluating risk by developing a framework and computational methodology for evaluating the impacts and risks of extreme fire events on regional and peri-urban populations (infrastructure and people) applicable to the Australian region. The research is considering three case studies of recent extreme fires employing an ensemble approach (sensitivity analysis) which varies the meteorology, vegetation and ignition in an effort to estimate fire risk to the case-study fire area and adjacent region. Outcomes from recent extreme fires have demonstrated a need for a tool to assess future bushfire impacts and risk on regional and peri-urban communities. Such a tool would illustrate (map) bushfire impact and risk across the urban fringe and will also enable fire and land management authorities to develop and assess the effect of appropriate fire risk treatment options at local, regional and national levels. The tool would also characterise vegetation, extreme fire weather, firespread, smoke production and dispersion, and estimate the consequences of extreme fires on communities. As well as being validated using conditions pertaining at the time of the case study events, the tool will be used to explore alternative scenarios reflecting the sensitivity in ignition, fuel load and state, meteorology and fire spread, as well as alternative suppression strategies. Results from these scenario analyses and associated reports and papers will be communicated via the project website and through structured workshops.
-
The Collaborative Research Centre for Greenhouse Gas Technologies (CO2CRC) Program 3.2 Risk Assessment is working toward a risk assessment procedure that integrates risk across the complete CCS system and can be used to meet the needs of a range of stakeholders. Any particular CCS project will hold the interest of multiple stakeholders who will have varied interests in the type of information and in the level of detail they require. It is unlikely that any single risk assessment tool will be able to provide the full range of outputs required to meet the needs of regulators, the general public and project managers; however, in many cases the data and structure behind the outputs will be the same. In using a suite of tools, a well designed procedure will optimize the interaction between the scientists, engineers and other experts contributing to the assessment and will allow for the required information to be presented in a manner appropriate for each stakeholder. Discussions of risk in CCS, even amongst the risk assessment community, often become confused because of the differing emphases on what the risks of interest are. A key question that must be addressed is: 'What questions is the risk analysis trying to answer?' Ultimately, this comes down to the stakeholders, whose interests can be broken into four target questions: - Which part of the capture-transport-storage CCS system? - Which timeline? (project planning, project lifespan, post closure, 1,000 years, etc) - Which risk aspect? (technical, regulatory, economic, public acceptance, or heath safety and environment) - Which risk metric? (Dollars, CO2 lost, dollars/tonne CO2 avoided, etc.) Once the responses to these questions are understood a procedure and suite of tools can be selected that adequately addresses the questions. The key components of the CO2CRC procedure we describe here are: etc
-
A key recommendation of the Council of Australian Governments review into natural disaster management arrangements in Australia is that a five-year national program of systematic and rigorous disaster risk assessments be developed and implemented. This process requires the construction of national databases and standardised methods and models that allow objective comparison of risks between regions and across hazards. A significant component of this process is the completion and delivery of a series of national earthquake risk assessments. The need for an improved understanding of earthquake ground shaking in Australia was recognised following the 1989 Newcastle earthquake, which resulted in 13 fatalities and A$4.5 billion in estimated losses. An enhanced capability to anticipate the impacts of such events will facilitate improved earthquake disaster mitigation and planning for Australian communities, and influence the development of relevant engineering codes and standards. To achieve this it is necessary to model earthquake events, the mechanisms by which earthquake energy dissipates, and the potential influence of variation in geological materials on the ground shaking. At present, national scale earthquake hazard products for Australia do not included the effect of regolith site response on ground shaking, and as such may provide inconsistent or inaccurate estimates of ground shaking in some areas. The development of the National Regolith Site Classification Map represents a significant advance in our ability to model the potential influence of near-surface geological materials on earthquake ground shaking, and therefore to assess earthquake hazard and risk in Australia. The National Regolith Site Classification Map presented here has been developed through the application of a pre-existing methodology which has been modified to suit Australian conditions. The changes include the development and application of an innovative method to account for weathering in bedrock geological units. To the extent that the data permits, site classification takes into account the age and physical properties of the geological materials and relates them to key geophysical parameters that most accurately represent the behaviour of these materials under the influence of earthquake ground motion. The compilation of data at both national and regional scales has led to the development of a multi-resolution tool that provides more detailed information in and around the major population centres. This same variation in spatial resolution does, however, make map sheet edge mismatches unavoidable. The National Regolith Site Classification Map provides a tool for estimating the regolith site response to ground shaking at any location in Australia. This product has potential implications for revision of earthquake-related Standards and Building Codes in Australia, particularly regarding the criteria used to classify sites according to ground shaking potential. When implemented within Geoscience Australia's National Earthquake Risk Model (EQRM) the National Regolith Site Classification Map and associated amplification factors represent fundamental components of the most rigorous available method for assessing earthquake risk in Australia.
-
The Bushfire CRC initiated in 2011 the project 'Fire & Impact Risk Evaluation - Decision Support Tool (F.I.R.E.-D.S.T)' involving Geoscience Australia, CSIRO, Bureau of Meteorology and University of Melbourne. The project is the largest of the Bushfire CRC's suite of projects and conducts research into the multiple aspects required for the computer simulation of bushfire impact and risk on the peri-urban and urban interface. This paper will provide an overview of the research directions for the project and our research progress. In particular we will summarise our progress in: - The development of a Bushfire Risk Assessment Framework, - The inclusion of detailed building information to improve exposure, - The inclusion of human factors and wind damage in determining building vulnerability to bushfires, - The new Bureau of Meteorology ACCESS Numerical Weather Prediction (NWP) system to provide high temporal and spatial resolution meteorology for input into the PHOENIX Rapidfire fire spread simulation model, - The development of very-high resolution local wind modifiers, - The changes made to the PHOENIX fire simulation system, - The development of an bushfire impact/damage subsystem, - The integration of the exposure, vulnerability, fire spread and impact systems to produce a cohesive research tool, and - Initial research on convection column and smoke plume dynamics. The team examined the effectiveness of this research by analysing numerous simulation scenarios. This paper will display the effectiveness of the research progress by providing one example of the comparison between the 2009 Black Saturday
-
Global climate change is putting Australia's infrastructure and in particular coastal infrastructure at risk. More than 80% of Australians live within the coastal zone. Almost 800,000 residences are within 3km of the coast and less than 6m above sea level. Much of Australia's land transport is built around road and rail infrastructure which is within the threatened coastal zone. A significant number of Australia's ports, harbours and airports are under threat. Australia's coastal zone contains several major cities, and supports agriculture, fisheries, tourism, coastal wetlands and estuaries, mangroves and other coastal vegetation, coral reefs, heritage areas and threatened species or habitats. Sea level rise is one physical effect of rising sea temperatures and is estimated at about 0.146m for 2030 (IPCC 2007) and up to 1.1m for 2100 (Antarctic and Climate Ecosystems CRC). The warming is likely to result in increases in intensity of both extra-tropical and tropical storms (spatially dependent) which are predicted to increase storm surge and severe wind hazard. Beaches, estuaries, coastal wetlands, and reefs which have adapted naturally to past changes in climate (storminess) and sea level over long time scales, now are likely to face faster rates of change. In many cases landward migration may be blocked by human land uses and infrastructure. Adaptation options include integrated coastal zone assessments and management; redesign, rebuilding, or relocation of capital assets; protection of beaches, dunes and maritime infrastructure; development zone control; and retreat plans.
-
Poster describing the FIRE-DST project (GA contribution) focising on the developments in 2011/12 FY with respect to the Bushfire Risk Assessment Framework (BRAF) and the computational framework.
-
Severe wind is one of the major natural hazards in Australia. The main contributors to economic loss in Australia are tropical cyclones, thunderstorms and sub-tropical (synoptic) storms. Geoscience Australia's Risk and Impact Analysis Group (RIAG) is developing mathematical models to study a number of natural hazards including wind hazard. This study examines synoptic wind hazard under current and future climate scenarios using RIAG's synoptic wind hazard model. This model can be used in non-cyclonic regions of Australia (Region A in the Australian-New Zealand Wind Loading Standard; AS/NZS 1170.2:2002) which are dominated by synoptic and thunderstorm winds. The methodology to study synoptic wind hazard involves a combination of three models: - a statistical model (ie. a model based on observed data) to quantify wind hazard using extreme value distributions; - a technique to extract and process wind speeds from a high-resolution regional climate model (RCM), which produces gridded hourly 'maximum time-step mean' wind speed and direction fields; and - a Monte Carlo method to generate gust wind speeds from the RCM mean winds. Gust wind speeds are generated by a numerical convolution of the modelled mean wind speed distribution and a distribution of observed 'regional' gust factor. To illustrate the methodology, wind hazard calculations under current and future climate conditions for the Australian state of Tasmania will be presented. The results show increases in synoptic wind hazard in some parts of the state especially at the end of this century.
-
The Australian National Coastal Vulnerability Assessment (NCVA) has been commissioned by the Federal Government (Department of Climate Change) to assess the risk to coastal communities from climate related hazards. The first-pass national assessment includes an evaluation of the exposure of infrastructure (residential and commercial buildings as well as roads and major infrastructure such as ports and airports) to sea-level rise and storm surge. In addition to an understanding of the 'number by type' and 'replacement value' of infrastructure at risk from inundation posed by the current climate, we have also examined the change in risk of inundation under a range of future climate scenarios (up to the end of the 21st century). The understanding of coastal vulnerability and risk is derived from a number of factors, including: the frequency and intensity of the hazard(s); community exposure and the relationship with stressors; vulnerability related to socio-economic factors; impacts that result from the interaction of those components; and capacity of communities, particularly vulnerable communities and groups, to plan, prepare, respond and recover from these impacts. These factors and resulting impacts from hazard events are often complex and often poorly known, but such complexity and uncertainty is not an excuse for inaction. Given these limitations, the NCVA has been undertaken using the best information available to understand the risk to coastal areas on a national scale, and to prioritise areas that will require more detailed assessment.
-
This final paper for the session presents the results of the new draft earthquake hazard assessment for Australia and compares them to the previous AS1170.4 hazard values. Draft hazard maps will be presented for several spectral periods (0.0, 0.2 and 1.0 s) at multiple return periods (500, 2500 and 10,000 years). These maps will be compared with both the current earthquake hazard used in AS1170.4 and with other assessments of earthquake hazard in Australia. In general the hazard in the draft map is higher in the western cratonic parts of Australia than it is in the eastern non-cratonic parts of Australia. Where regional source zones are included, peaks in hazard values in the map are generally comparable to those in the current AS1170.4 map. When seismicity 'hotspot zones are included, as described in the previous paper, several of them produce much higher hazard peaks than any in the AS1170.4 map. However, such hotspots do not affect as large an area as many of those in the current AS1170.4 map. Finally, hazard curves for different cities will also be presented and compared to those predicted by the method outlined in AS1170.4.
-
Geoscience Australia has developed a model to assess severe wind hazard for large-scale numerical model-derived grided data. The severe wind modelling approach integrates two models developed at Geoscience Australia: a) A statistical model based on observations which determines return periods (RP) of severe winds using Extreme Value distributions (EVD), and b) A model which extracts mean wind speeds from high resolution numerical models (climate simulations) and generates wind gust from the mean speeds using Monte Carlo simulation (convolution with empirical gust factors) This methodology is particularly suitable for the study of wind hazard over large regions, and is being developed to provide improved spatial information for the Australia/NZ Wind Loading Standard (AS/NZS 1170.2, 2002). The methodology also allows comparison of current and future wind hazard under changing climate conditions. To illustrate the characteristics and capabilities of the methodology, the determination of severe wind hazard for a high-resolution grid encompassing the state of Tasmania (south of the Australian continent) will be presented and discussed, considering both the current and a range of possible future climate conditions (utilising IPCC B1 & A2 emission scenarios).