hydrology
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
The Surface Hydrology Points (Regional) dataset provides a set of related features classes to be used as the basis of the production of consistent hydrological information. This dataset contains a geometric representation of major hydrographic point elements - both natural and artificial. This dataset is the best available data supplied by Jurisdictions and aggregated by Geoscience Australia it is intended for defining hydrological features.
-
Subtitle: Behind the Scenes of Geofabric Version 3 Pilot & the Future of Geospatial Surface Water Information The Bureau of Meteorology's Australian Hydrological Geospatial Fabric (Geofabric) was established in 2008 as the spatial information database to support water accounting and resource assessment mandated under the Water Act 2007. Foundation layers for Geofabric versions 1 and 2 were developed from 1:250K streamline data and the 9 second resolution national DEM. The uses of the Geofabric data have expanded to new disciplines and have resulted in increased demand for finer national resolution. Version 3 of the Geofabric is now under development in a collaborative project between Geoscience Australia, CSIRO, Australian National University (ANU) and the Bureau of Meteorology. The foundation inputs for Geofabric version 3 are based on the integrated national surface hydrology dataset which uses the best available scale data from the jurisdictions and the 1 second resolution SRTM DEM. This significant enhancement presents both challenges and opportunities. This presentation at the Surveying & Spatial Sciences Institute (SSSI) ACT Region conference on 16 August 2013 aims to show the work being undertaken in the pilot areas of the Namoi and Murrumbidgee River Regions.
-
The combination of anthropogenic activity and climate variability has resulted in changes to hydrologic regimes across the globe. Changes in water availability impact on vegetation structure and function, particularly in semi-arid landscapes. Riparian and floodplain vegetation communities are sensitive to changes to surface-water and groundwater availability in these water-limited landscapes. Remote-sensing multi-temporal methods can be used to detect changes in vegetation at a regional to local scale. In this study, a `best-available pixel' approach was used to represent dry-season, woody-vegetation-canopy characteristics inferred from Normalised Difference Vegetation Index (NDVI). This paper describes a method in which Landsat 5 TM and Landsat 7 ETM+ data from 1987 to 2011 were processed using object-based image-analysis techniques to generate annual minimum NDVI values for vegetation communities in the Lower-Darling floodplain The changes detected in riparian and floodplain canopies over time can then be integrated with other spatial data to identify water-source dependence and infer a relationship between changes to the hydrologic characteristics of specific water sources and vegetation dynamics.
-
Mean monthly and mean annual areal actual, areal potential and point potential evapotranspiration grids. The grids show the evapotranspiration values across Australia in the form of two-dimensional array data. The mean data are based on the standard 30-year period 1961-1990. Gridded data were generated using the ANU (Australian National University) 3-D Spline (surface fitting algorithm). The grid point resolution of the data is 0.1 degrees ( approximately 10km). As part of the 3-D analysis process a 0.1 degree resolution digital elevation model (DEM) was used. Approximately 700 stations were used in the analysis, and all input station data underwent a high degree of quality control before analysis, and conform to WMO (World Meteorological Organisation) standards for data quality. Areal Actual ET is the ET that actually takes place, under the condition of existing water supply, from an area so large that the effects of any upwind boundary transitions are negligible and local variations are integrated to an areal average. Areal Potential ET is the ET that would take place, under the condition of unlimited water supply, from an area so large that the effects of any upwind boundary transitions are negligible and local variations are integrated to an areal average. Point Potential ET is the ET that would take place, under the condition of unlimited water supply, from an area so small that the local ET effects do not alter local airmass properties. It is assumed that latent and sensible heat transfers within the height of measurement are through convection only. The above definitions are based on those given by Morton (1983), but we have used the term areal potential ET for Mortons wet-environment ET and the term point potential ET for Mortons potential ET. Morton, F.I. (1983). Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. Journal of Hydrology, 66: 1-76.
-
Mean monthly and mean annual maximum, minimum & mean temperature grids. The grids show the temperature values across Australia in the form of two-dimensional array data. The mean data are based on the standard 30-year period 1961-1990. Gridded data were generated using the ANU (Australian National University) 3-D Spline (surface fitting algorithm). As part of the 3-D analysis process a 0.025 degree resolution digital elevation model (DEM) was used. The grid point resolution of the data is 0.025 degrees (approximately 2.5km). Approximately 600 stations were used in the analysis over Australia. All input station data underwent a high degree of quality control before analysis, and conform to WMO (World Meteorological Organisation) standards for data quality.
-
The purpose of this paper is to investigate and quantify the accuracy with which hydrological signals in the Murray-Darling Basin, southeast Australia can be estimated from GRACE. We assessed the extent to which the Earth's major geophysical processes contaminate the gravitational signals in the Basin. Eighteen of the world's largest geophysical processes which generate major gravitational signals (e.g. melting of the Greenland icesheet, hydrology in the Amazon Basin) were simulated and the proportion of the simulated signal detected in the Murray - Darling Basin was calculated. The sum of the cumulative effects revealed a maximum of ~4 mm (equivalent water height) of spurious signal was detected within the Murray - Darling Basin; a magnitude smaller than the uncertainty of the basin-scale estimates of changes in total water storage. Thus, GRACE products can be used to monitor broad scale hydrologic trends and variability in the Murray-Darling Basin without the need to account for contamination of the estimates from external geophysical sources.
-
The Environmental Arttibutes Database is a set of lookup tables supplying attributes describing the natural and anthropogenic characteristics of the stream and catchment environment that was developed by the Australian National University (ANU) in 2011. The data is supplied as part of the supplementary Geofabric products which is associated with the 9 second DEM derived streams and the National Catchment Boundaries based on 250k scale stream network. Please consult the spreadsheet below for details of the attributes and their source data.
-
Four data formats are available for download, three vector (e00, mif, shp) and one raster (ecw).
-
In many areas of the world, vegetation dynamics in semi-arid floodplain environments have been seriously impacted by increased river regulation and groundwater use. In this study, the condition of two of Australia's iconic riparian and floodplain vegetation elements, River Red Gums (Eucalyptus camaldulensis) and Black Box (E. largiflorens) are examined in relation to differing hydraulic regimes. With increases in regulation along Murray-Darling Basin rivers, flood volume, seasonality and frequency have changed which has in turn affected the condition and distribution of vegetation. Rather than undertaking a field based assessment of tree health in response to current water regimes, this paper documents a remote sensing study that assessed historic response of vegetation to a range of different climatic and hydraulic regimes at a floodplain scale. This methodology innovatively combined high-resolution vegetation structural mapping derived from LiDAR data (Canopy Digital Elevation Model and Foliage Projected Cover) with 23 years of Landsat time-series data. Statistical summaries of Normalised Difference Vegetation Index values were generated for each spatially continuous vegetation structural class (e.g. stand of closed forest) for each Landsat scene. Consequently long-term temporal change in vegetation condition was assessed against different water regimes (drought, local rainfall, river bank full, overbank flow, and lake filling). Results provide insight into vegetation response to different water sources and overall water availability. Additionally, some inferences can be made about lag times associated with vegetation response and the duration of the response once water availability has declined (e.g. after floodwaters recede). This methodology should enable water managers to better assess the adequacy of environmental flows.
-
Mean monthly and mean annual rainfall grids. The grids show the rainfall values across Australia in the form of two-dimensional array data. The mean data are based on the standard 30-year period 1961-1990. Gridded data were generated using the ANU (Australian National University) 3-D Spline (surface fitting algorithm). The resolution of the data is 0.025 degrees ( approximately 2.5km) - as part of the 3-D analysis process a 0.025 degree resolution digital elevation model (DEM) was used. Approximately 6000 stations were used in the analysis over Australia. All input station data underwent a high degree of quality control before analysis, and conform to WMO (World Meteorological Organisation) standards for data quality.