alteration
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
3D Geophysics: Inversion methodology and 3D alteration mapping, with application to North Queensland
The 2007 North Queensland seismic survey provided a new geodynamic framework and province architecture map for the North Queensland region. Coupled with this, companion geophysical studies provided new understandings of the subsurface of the region. A major focus of the geophysical investigations was the use of potential field inversions. These inversions allow for the mapping of units undercover, predict the extension of geometries away from seismic lines, and also provide a measure of alteration. The North Queensland region also allowed for the testing of both qualitative and quantitative methods to map alteration using geophysical inversions.
-
No abstract available
-
The Cobar project of the pmd*CRC utilised potential field inversions to delineate zones of alteration within the Cobar region, NSW. These zones of alteration and correlation with mineralisation is consistent with the mineral system analysis of the region, performed by the T11 Cobar project.
-
Regional-scale constrained potential field inversions can be used to infer rock types, alteration, and structure. This is particularly valuable when basement is obscured by younger cover. The methods outlined in this study have been applied to a 150 km ? 150 km region around the giant Olympic Dam copper-uranium-gold deposit, where abundant haematite, sulphide, and magnetite alteration produces a strong potential field response despite thick cover. The results are used to develop the first 3D map of magnetite and haematite/sulphide alteration for the Olympic Cu-Au province, and shows that the alteration around known Cu-Au mineral occurrences can be detected using coarse regional-scale inversions. The provision of a reference model in the inversion formulation permits geological observations to be introduced into the inversion process, and to be used to guide the inversion towards more geologically reasonable outcomes. This allows hypotheses regarding 3D geological architecture to be tested rigorously for compatibility with potential field data. An iterative procedure of inversion followed by updating of the reference model allows 3D maps of alteration and structure to be created that are consistent with both the known geology and observed potential field data.
-
South Australia's Gawler Craton is known for its high exploration potential for iron oxide copper gold (IOCG) deposits. In addition to the giant Olympic Dam deposit, relatively recent discoveries at Prominent Hill and Carapateena and a large number of smaller prospects confirm the attractiveness of the Mesoproterozoic rocks near the eastern margin of the Craton. The challenge facing explorers is the thick and extensive sedimentary and volcanic cover that overlies those prospective basement rocks. The only way to image buried rocks is by integrated analysis of remotely measured geophysical data with geological knowledge. Deep reflection seismic data provides critical information on unit depths, thickness and geometries. Interpreted profiles along the 03GA-OD1 and transverse 03GA-OD2 reflection seismic lines centred on the Olympic Dam deposit provide the best available information on the crustal-scale 3D geometries in that area. These relationships are extended throughout a 600 km east-west by 510 km north-south subset of the eastern Gawler Craton, to a depth of 25 km below surface, using geologically-constrained 3D inversion of public domain gravity and magnetic data. Including geological constraints is critical to ensure that the 3D property models recovered using the inversions are consistent with all available geophysical and geological data. Geological constraints are developed from surface mapping, seismic profile interpretations on the Olympic Dam lines as well as the 08GA-C01 and 03GA-CU1 lines in the Curnamona Craton, and 2D potential field modelling. Where knowledge of the cover rocks exists, it is included as a constraint to enhance the resolution of features at depth.
-
Physical property measurements provide a critical link between geological observations and geophysical measurements and modelling. To enhance the reliability of gravity and magnetic modelling in the Yilgarn Craton's Agnew-Wiluna greenstone belt, mass and magnetic properties were analysed on 157 new rock samples and combined with an existing corporate database of field measurements. The new samples include sulphide ore, serpentinised and olivine-bearing ultramafic host rocks, granitoid, and felsic and mafic volcanic and volcaniclastic country rock. Synthesis of the data provides a useful resource for future geophysical modelling in the region. Several rock types in the region have sufficiently distinct physical properties that a discriminant diagram is proposed to facilitate a basic classification of rock types based on physical properties. However the accumulation of emplacement, metamorphic, hydrothermal and structural processes has complicated the physical properties of the rocks by imposing duplicate and sometimes opposing physical property trends. The data confirms that massive sulphide and ultramafic rocks have the most distinctive mass and magnetic properties but with variability imposed by their complex history. Sulphide content imposes the strongest control on densities, but can only be identified when comprising > 10 vol. % of the rock. The pyrrhotite-rich Ni-sulphide assemblages generally have similar magnetic properties to the host ultramafic rocks, but can have much lower susceptibilities where the thermal history of the rocks has favoured development of hexagonal pyrrhotite over monoclinic pyrrhotite. In ultramafic rocks that contain < 10 vol. % sulphides, density and susceptibility are primarily controlled by serpentinisation, with olivine breaking down to serpentine and magnetite in the presence of water.
-
No abstract available
-
The Kangaroo Caves zinc-copper deposit in the Archaean Panorama District in the northern Pilbara Craton, Western Australia contains an Indicated and Inferred Mineral Resource of 6.3 million tonnes at 3.3% zinc and 0.5% copper. The Kangaroo Caves area is characterised by predominantly tholeiitic volcanic rocks of the Kangaroo Caves Formation, which is overlain by turbiditic sedimentary and volcanic rocks of the Soanesville Group. Zinc-copper mineralisation is hosted mainly by the regionally extensive Marker Chert, the uppermost unit of the Kangaroo Caves Formation, and structurally controlled by D1 synvolcanic faults. The upper area of the deposit is characterised by quartz-sphalerite ± pyrite ± baryte ± chalcopyrite, whereas the lower area contains mainly chlorite-pyrite-quartz-carbonate-sericite ± chalcopyrite ± sphalerite. Laser ablation inductively coupled plasma mass spectrometry analyses show that cobalt-nickel ratios in pyrite are significantly greater in the upper, zinc-rich area (median copper/nickel = 0.4) of the deposit than the lower, zinc-poor area (median copper/nickel = 5). Structural analysis of the Kangaroo Caves area combined with Leapfrog modelling of ore and trace element distribution shows that the deposit is predominantly an elongate sheet of zinc mineralisation (-1%), which plunges ~30° to the northeast and is approximately 1000 metres in length. The morphology of the Kangaroo Caves deposit was retained from its original formation, despite rotation during the D2 event. Variations in hydrothermal alteration assemblages, including the copper and nickel contents of pyrite within the deposit and underlying dacite, are interpreted to be the result of variations in the influx and mixing of seawater with upwelling volcanogenic fluids during zinc-copper mineralization. At the Kangaroo Caves area the cobalt-nickel ratio of pyrite can be used as an exploration vector towards high-grade zinc-copper mineralization.
-
Geophysical inversions provide a mechanism to calculate subsurface chemical alteration in terms of alteration minerals. In the Cobar region, NSW, Australia, the base metal deposits show significant geophysical contrasts to their host rocks. These contrasts can be inverted to provide measures of the causative chemical alteration, allowing targeting for mineralisation under cover.
-
This web service provides access to the Geoscience Australia (GA) ISOTOPE database containing compiled age and isotopic data from a range of published and unpublished (GA and non-GA) sources. The web service includes point layers (WFS, WMS, WMTS) with age and isotopic attribute information from the ISOTOPE database, and raster layers (WMS, WMTS, WCS) comprising the Isotopic Atlas grids which are interpolations of the point located age and isotope data in the ISOTOPE database.