Offshore
Type of resources
Keywords
Publication year
Service types
Topics
-
The Vlaming Sub-Basin CO2 Storage Potential Study web service includes the datasets associated with the study in the Vlaming Sub-basin, located within the southern Perth Basin about 30 km west of Perth. The data in this web service supports the results of the Geoscience Australia Record 2015/009 and appendices. The study provides an evaluation of the CO2 geological storage potential of the Vlaming Sub-basin and was part of the Australian Government's National Low Emission Coal Initiative.
-
<div>The Vlaming Sub-Basin CO2 Storage Potential Study data package includes the datasets associated with the study in the Vlaming Sub-basin, located within the southern Perth Basin about 30 km west of Perth. The data in this data package supports the results of the Geoscience Australia Record 2015/009 and appendices. The study provides an evaluation of the CO2 geological storage potential of the Vlaming Sub-basin and was part of the Australian Government's National Low Emission Coal Initiative.</div>
-
The data contained in this service is not authoritative and has not been updated since 2006. This web service contains the legacy data found in the Australian Marine Spatial Information System (AMSIS) between 2006 and 2015, with a currency date of 2006. To honour the original licensing arrangements with the data holders, only the WMS is available. Users will need to contact the agency responsible for the data to check current validity and spatial precision.
-
The data contained in this service is not authoritative and has not been updated since 2006. This web service contains the legacy data found in the Australian Marine Spatial Information System (AMSIS) between 2006 and 2015, with a currency date of 2006. To honour the original licensing arrangements with the data holders, only the WMS is available. Users will need to contact the agency responsible for the data to check current validity and spatial precision.
-
<div>The Canning Basin is a prospective hydrocarbon frontier basin and is unusual for having limited offshore seismic and well data in comparison with its onshore extent. In this study, seismic mapping was conducted to better resolve the continuity of 13 key stratigraphic units from onshore to offshore to delineate prospective offshore hydrocarbon-bearing units, and better understand the distribution of mafic igneous units that can compartmentalise migration pathways and influence heat flow. The offshore Canning Basin strata are poorly constrained in six wells with limited seismic coverage; hence data availability was bolstered by integrating data from the onshore portion of the basin and adjacent basins into a single 3D seismic stratigraphic model. This model integrates over 10 000 km of historical 2D seismic data and 23 exploration wells to allow mapping of key stratal surfaces. Mapped seismic horizons were used to construct isochores and regional cross-sections. Seven of the 13 units were mapped offshore for the first time, revealing that the onshore and offshore stratigraphy are similar, albeit with some minor differences, and mafic igneous units are more interconnected than previously documented whereby they may constitute a mafic magmatic province. These basin-scale maps provide a framework for future research and resource exploration in the Canning Basin. To better understand the basin’s geological evolution, tectonic history and petroleum prospectivity, additional well data are needed in the offshore Canning Basin where Ordovician strata have yet to be sampled.</div><div><br></div><div>C. T. G. Yule, J. Daniell, D. S. Edwards, N. Rollet & E. M. Roberts (2023). Reconciling the onshore/offshore stratigraphy of the Canning Basin and implications for petroleum prospectivity, Australian Journal of Earth Sciences, DOI: 10.1080/08120099.2023.2194945</div> Appeared in Australian Journal of Earth Sciences Pages 691-715, Volume 70, 2023 - Issue 5.
-
<div>As a resource to enhance exploration in the offshore Otway Basin, Geoscience Australia (GA) has produced a new well folio that extends the scope of a previous release by including 32 key wells from the central and southeast regions. This folio covers the areas from Normanby 1 on the Normanby Terrace, through the Shipwreck Trough and Nelson Sub-basin, to Whelk 1 in the south. The previous well composites included wireline logs for petrophysical analysis, interpreted lithology, organic geochemistry and organic petrology data, and well markers. This folio includes all of these attributes with the addition of core-based depositional environment (DE) and gross depositional environment (GDE) interval interpretations which were subsequently used to constrain wireline interpretation away from core control. The core/wireline lithological interpretation along with further seismic and biostratigraphic data informed well marker locations and enabled a better regional correlation across the basin. The folio provides the complementary datasets used to construct each well composite. Presented at the Australian Energy Producers (AEP) Conference & Exhibition (https://energyproducersconference.au/conference/)
-
<div>The noble gas database table contains publicly available results from Geoscience Australia's organic geochemistry (ORGCHEM) schema and supporting oracle databases for molecular and noble gas isotopic analyses on natural gases sampled from boreholes and fluid inclusion gases from rocks sampled in boreholes and field sites. Data includes the borehole or field site location, sample depths, shows and tests, stratigraphy, analytical methods, other relevant metadata, and the molecular and noble gas isotopic compositions for the natural gas samples. The molecular data are presented in mole percent (mol%) and cubic centimetres (at Standard Pressure and Temperature) per cubic centimetre (ccSTP/cc). The noble gas isotopic values that can be measured are; Helium (He, <sup>3</sup>He, <sup>4</sup>He), Neon (Ne, <sup>20</sup>Ne, <sup>21</sup>Ne, <sup>22</sup>Ne), Argon (Ar, <sup>36</sup>Ar, <sup>38</sup>Ar, <sup>40</sup>Ar), Krypton (Kr, <sup>78</sup>Kr, <sup>80</sup>Kr, <sup>82<</sup>Kr, <sup>83</sup>Kr, <sup>84</sup>Kr, <sup>86</sup>Kr) and Xenon (Xe, <sup>124</sup>Xe, <sup>126</sup>Xe, <sup>128</sup>Xe, <sup>129</sup>Xe, <sup>130</sup>Xe, <sup>131</sup>Xe, <sup>132</sup>Xe, <sup>134</sup>Xe, <sup>136</sup>Xe) which are presented in cubic micrometres per cubic centimetre (mcc/cc), cubic nanometres per cubic centimetre (ncc/cc) and cubic picometres per cubic centimetre (pcc/cc). Acquisition of the molecular compounds are by gas chromatography (GC) and the isotopic ratios by mass spectrometry (MS). Compound concentrations that are below the detection limit (BDL) are reported as the value -99999.</div><div><br></div><div>These data provide source information about individual compounds in natural gases and can elucidate fluid migration pathways, irrespective of microbial activity, chemical reactions and changes in oxygen fugacity, which are useful in basin analysis with derived information being used to support Australian exploration for energy resources and helium. These data are collated from Geoscience Australia records and well completion reports. The noble gas data for natural gases and fluid inclusion gases are delivered in the Noble Gas Isotopes web services on the Geoscience Australia Data Discovery Portal at https://portal.ga.gov.au which will be periodically updated.</div><div><br></div><div><br></div>
-
Before planning commercial activities in Australian waters, pre-competitive data is essential to characterise the seabed environment. AusSeabed is a collaborative initiative that brings together publicly available seabed data and coordinates future data collection. AusSeabed is led by Geoscience Australia and involves partners from across Commonwealth and State governments, academia, and private industry. All data is published through the AusSeabed data portal. This includes survey data collected by government agencies, research institutions, and private industry as well as seamless regional and national gridded bathymetric surfaces. The portal also contains metadata for unpublished surveys as well as contextual environmental data, including geomorphology, sedimentology, geophysical, and coastal datasets. The data in AusSeabed is crucial for offshore energy development. Bathymetric surfaces are needed for oceanographic models that are used to assess wave and tidal energy, as well as for site assessments and marine spatial planning. Beyond those immediate uses, AusSeabed data has wide-ranging applications and benefits across multiple ocean sectors, including industry (offshore energy, fishing, and tourism); Defence, marine park management; environmental impact assessments; hazard modelling (tsunami and storm surge); and maritime boundary definition. As part of the collaboration, the AusSeabed community has developed a Survey Coordination Tool, where users are invited to share broad areas of interest, submit direct requests for surveys to be conducted by the Australian Hydrographic Office’s Hydroscheme Industry Partnership Program (HIPP), or publish their own survey plans. The Areas of Interest are used by government and research agencies to help prioritise new data collection and the processing of legacy bathymetric data that is currently unavailable for reuse. As a community-guided initiative, AusSeabed is a central hub for bathymetric quality guidelines, shared activities, and news. If you’re working on or above Australia’s seabed, you need to get involved. Abstract/Poster presented at the 2024 ICOE
-
<div>The Roebuck Basin on Australia’s offshore north-western margin is the focus of regional energy exploration activity. Drilling in the Roebuck Basin resulted in oil and gas discoveries at Phoenix South 1 (2014), Roc 1 (2015–2016) and Dorado 1 (2018) in the Bedout Sub-basin (Figure 1‑2) and demonstrated the presence of a petroleum system in Lower Triassic strata. These discoveries have been evaluated for development and production with infill drilling at Roc 2 (2016), Phoenix South 2 (2016), Phoenix South 3 (2018), Dorado 2 (2019), and Dorado 3 (2019). Recent drilling by Santos (2022) has resulted in the discovery of oil at Pavo 1 (2022) and hydrocarbon shows at Apus 1 (2022).</div><div><br></div><div>To complement this industry work, Geoscience Australia’s Offshore Energy Systems program produces pre-competitive information to assist with the evaluation of the energy and resource potential of the central North West Shelf, including both hydrogen and helium resources, and to attract exploration investment to Australia. As part of this program, determination of the molecular and noble gas isotopic composition of natural gases from selected petroleum wells in the Roebuck Basin were undertaken by Smart Gas Sciences, under contract to Geoscience Australia, with results from these analyses being released in this report. This report provides additional gas data to determine the sources of natural gases in the Roebuck Basin and build on previously established gas-gas correlations. Noble gas isotopic data can be used in conjunction with carbon and hydrogen isotopic data to determine the origin of both inorganic and organic (hydrocarbon) gases. This information can be used in future geological programs to determine the source and distribution of hydrogen and helium in natural gases and support acreage releases by the Australian Government.</div><div><br></div>
-
Geoscience Australia has undertaken a regional seismic mapping study of the offshore Otway Basin extending across the explored inner basin to the frontier deep-water region. Seismic interpretation covers over 18,000 line-km of new and reprocessed data acquired in the 2020 Otway Basin seismic program, over 40,000 line-km of legacy 2D seismic data and GA’s new 2023 Otway 3D post-stack Mega Merge seismic dataset. This work provides a new perspective on regional structural architecture and basin evolution and has important implications for hydrocarbon prospectivity of this region. This seminar was two short talks centring on the Otway Basin. <u>Post-stack 3D merging to fast-track regional interpretation - offshore Otway Basin case study, presented by Merrie-Ellen Gunning</u> This case study was to produce a regularised and seamless 3D dataset of the highest possible quality, for the offshore Otway Basin, within two-months. The input migrated volumes varied by data extent, migration methodology, angle range and grid orientation. Fourteen input volumes totalling 8,092 km2 were post-stack merged and processed to produce a continuous and consistent volume, enabling more efficient and effective interpretation of the region. The surveys were regularised onto a common grid, optimised for structural trend, prior to survey matching. A mis-tie analysis algorithm, applied over a time window optimised for interpretation of key events, was used to derive corrections for timing, phase and amplitude, using a reference. This was followed by time-variant spectral and amplitude matching to improve continuity between volumes. Additional enhancements including noise removal and lateral amplitude scaling were also applied. The final merged volume offers significant uplift over the inputs, providing better imaging of structure and events and dramatically improving the efficiency and quality of interpretation. This enables rapid reconnaissance of the area by explorers. <u>Structural architecture of the offshore Otway Basin presented by Chris Nicholson</u> We present new basin-scale isochore maps that show the distribution of the Cretaceous depocentres. Maps for the Lower Cretaceous Crayfish and Eumeralla supersequences, together with those recently published for the Upper Cretaceous Shipwreck and Sherbrook Supersequences, completes the set of isochore maps for the main tectonostratigraphic basin intervals. Mapping of basement involved faults has revealed structural fabrics that have influenced depocentre development. The tectonostratigraphic development of depocentres and maps of deep crustal units delineate crustal thinning trends related to late Cretaceous extension phases. This work highlights the need to review and update structural elements. For example, the boundary between the Otway and Sorell basins is now geologically constrained. The refinements to the tectonostratigraphic evolution of the Otway Basin presented here have important implications for the distribution and potential maturity of petroleum systems, especially with regard to heat flow associated with crustal extension.