Hydrocarbons
Type of resources
Keywords
Publication year
Service types
Topics
-
Publicly available geological data in the Adavale Basin region are compiled to produce statements of existing knowledge for natural hydrogen, hydrogen storage, coal and mineral occurrences. This data guide also contains an assessment of the potential for carbon dioxide (CO2) geological storage and minerals in the basin region. Geochemical analysis of gas samples from petroleum boreholes in the basin shows various concentrations of natural hydrogen. However, the generation mechanism of the observed natural hydrogen concentration is still unknown. The Adavale Basin also has the potential for underground hydrogen storage in the Boree Salt. Given the depth of the Boree Salt (wells have intersected the salt at depths below 1800 m) and the high fluid pressure gradient in the basin, the construction of underground salt caverns should include consideration of stability and volume shrinkage. Mineral occurrences are all found in the basins overlying the Adavale region. However, they are small (thousands of tonnes range) and not currently of economic interest. The Adavale Basin has potential for base and precious metal deposits due to suitable formation conditions, but the depth of the basin makes exploration and mining difficult and expensive. There are no identified occurrences or resources of coal in the Adavale Basin. Given the depth of the basin, extraction of any identified coal would probably be uneconomic, with the potential exception of coal seam gas extraction. An assessment of CO2 geological storage also shows prospective storage areas in the Eromanga Basin within the Adavale Basin region in the Namur-Murta and Adori-Westbourne play intervals.
-
Publicly available geological data in the north Bowen Basin region are compiled to produce statements of existing knowledge for natural hydrogen, hydrogen storage, coal and mineral occurrences. This web service summarises potential mineral, natural hydrogen, coal and carbon dioxide geological storage in the north Bowen Basin region.
-
Following the publication of Geoscience Australia record 2014/09: Petroleum geology inventory of Australia's offshore frontier basins by Totterdell et. al, (2014), the onshore petroleum section embarked upon a similar project for onshore Australian basins. The purpose of this project is to provide a thorough basis for whole of basin information to advise the Australia Government and other stakeholders, such as the petroleum industry, regarding the exploration status and prospectivity of onshore Australian basins. Eight onshore Australian basins have been selected for this volume and these include: the McArthur, South Nicholson, Georgina, Amadeus, Warburton, Wiso, Galilee and Cooper basins. This record provides a comprehensive whole of basin inventory of the geology, petroleum systems, exploration status and data coverage for these eight onshore Australian basins. It draws on precompetitive work programs by Geoscience Australia as well as publicly available exploration results and geoscience literature. Furthermore, the record provides an assessment of issues and unanswered questions and recommends future work directions to meet these unknowns.
-
This petroleum systems summary report provides a compilation of the current understanding of petroleum systems for the South Nicholson Basin and Isa Superbasin region. The contents of this report are also available via the Geoscience Australia Portal at https://portal.ga.gov.au/, called The Petroleum Systems Summary Assessment Tool (Edwards et al., 2020). Three summaries have been developed as part of the Exploring for the Future (EFTF) program (Czarnota et al., 2020); the McArthur Basin, the Canning Basin, and a combined summary of the South Nicholson Basin and Isa Superbasin region. The petroleum systems summary reports aim to facilitate exploration by summarizing key datasets related to conventional and unconventional hydrocarbon exploration, enabling a quick, high-level assessment the hydrocarbon prospectivity of the region.
-
Statements of existing knowledge are compiled for known mineral, coal, hydrocarbon and carbon capture and storage (CCS) resources and reserves in the Adavale Basin. This data guide illustrates the current understanding of the distribution of these key resource types within the Adavale Basin region based on trusted information sources. It provides important contextual information on the Adavale Basin and where additional details on discovered resources can be found. So far, mineral deposits have not been found in the Adavale Basin. There are no coal deposits found in the basin itself, but 6 large coal deposits exist in the overlying basins in the Adavale Basin region. Historically, some small conventional gas resources have been found in the basin. Currently, there are no commercial reserves or available resources identified in the Adavale Basin itself. There are no active or planned carbon capture and storage (CCS) projects in the Adavale basin.
-
<div>The soil gas database table contains publicly available results from Geoscience Australia's organic geochemistry (ORGCHEM) schema and supporting oracle databases for gas analyses undertaken by Geoscience Australia's laboratory on soil samples taken from shallow (down to 1 m below the surface) percussion holes. Data includes the percussion hole field site location, sample depth, analytical methods and other relevant metadata, as well as the molecular and isotopic compositions of the soil gas with air included in the reported results. Acquisition of the molecular compounds are by gas chromatography (GC) and the isotopic ratios by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). The concentrations of argon (Ar), carbon dioxide (CO₂), nitrogen (N₂) and oxygen (O₂) are given in mole percent (mol%). The concentrations of carbon monoxide (CO), helium (He), hydrogen (H₂) and methane (C₁, CH₄) are given in parts per million (ppm). Compound concentrations that are below detection limit (BDL) are reported as the value -99999. The stable carbon (<sup>13</sup>C/<sup>12</sup>C) and nitrogen (<sup>15</sup>N/<sup>14</sup>N) isotopic ratios are presented in parts per mil (‰) and in delta notation as δ<sup>13</sup>C and δ<sup>15</sup>N, respectively.</div><div><br></div><div>Determining the individual sources and migration pathways of the components of natural gases found in the near surface are useful in basin analysis with derived information being used to support exploration for energy resources (petroleum and hydrogen) and helium in Australian provinces. These data are collated from Geoscience Australia records with the results being delivered in the Soil Gas web services on the Geoscience Australia Data Discovery portal at https://portal.ga.gov.au which will be periodically updated.</div>
-
Publicly available geological data in the Cooper Basin region are compiled to produce statements of existing knowledge for natural hydrogen, hydrogen storage, coal and mineral occurrences. This web service summarises mineral potential in the Cooper Basin region.
-
Publicly available geological data in the Cooper Basin region are compiled to produce statements of existing knowledge for natural hydrogen, hydrogen storage, coal and mineral occurrences. This web service summarises mineral potential in the Cooper Basin region.
-
Publicly available geological data in the Cooper Basin region are compiled to produce statements of existing knowledge for natural hydrogen, hydrogen storage, coal and mineral occurrences. This data guide also contains assessment of the potential for carbon dioxide (CO2) geological storage and minerals in the basin region. Geochemical analysis of gas samples from petroleum in the basin shows various concentrations of natural hydrogen. However, the generation mechanism of the observed natural hydrogen concentration is still unknown. The mineral occurrences are all found in the overlying basins and are small and of little economic significance. The Cooper Basin has some potential for base metal and uranium deposits due to somewhat suitable formation conditions, but the depth of the basin makes exploration and mining difficult and expensive. This also applies to coal, where there are no identified occurrences or resources in the Cooper Basin. However, if some were identified, the depth of the basin would probably make extraction uneconomic, with the potential exception of coal seam gas extraction. CO2 geological storage assessment in the overlying Eromanga Basin suggests that most areas over the Cooper Basin (except over the Weena Trough in the south-west) are prospective for geological storage CO2.
-
Publicly available geological data in the Galilee Basin region are compiled to produce statements of existing knowledge for natural hydrogen, hydrogen storage, coal and mineral occurrences. This data guide also contains assessment of the potential for carbon dioxide (CO2) geological storage and minerals in the basin region. The mineral occurrences are mostly found in the overlying basins, and they are often small and of little economic significance. There are some exceptions, such as the Lilyvale vanadium deposit found in the northern Galilee region, in the overlying Eromanga Basin. The Galilee Basin has limited potential for uranium and precious metal deposits due to relative lack of suitable formation conditions, but the depth of much of the basin makes exploration and mining difficult and expensive. There are some large coal measures found in the Galilee Basin, with 17 deposits in the Galilee and overlying Eromanga basins, containing about 38 billion tonnes of black coal. An assessment of geological storage of CO2 potential suggests the Galilee Basin Betts Creek - Rewan Play is the most prospective for storing CO2, with the highest potential around the central basin region. There are no reports of natural hydrogen in the Galilee Basin.