Cenozoic
Type of resources
Keywords
Publication year
Service types
Topics
-
This data package, completed as part of Geoscience Australia’s National Groundwater Systems (NGS) Project, presents results of the second iteration of the 3D Great Artesian Basin (GAB) and Lake Eyre Basin (LEB) (Figure 1) geological and hydrogeological models (Vizy & Rollet, 2023) populated with volume of shale (Vshale) values calculated on 2,310 wells in the Surat, Eromanga, Carpentaria and Lake Eyre basins (Norton & Rollet, 2023). This provides a refined architecture of aquifer and aquitard geometry that can be used as a proxy for internal, lateral, and vertical, variability of rock properties within each of the 18 GAB-LEB hydrogeological units (Figure 2). These data compilations and information are brought to a common national standard to help improve hydrogeological conceptualisation of groundwater systems across multiple jurisdictions. This information will assist water managers to support responsible groundwater management and secure groundwater into the future. This 3D Vshale model of the GAB provides a common framework for further data integration with other disciplines, industry, academics and the public and helps assess the impact of water use and climate change. It aids in mapping current groundwater knowledge at a GAB-wide scale and identifying critical groundwater areas for long-term monitoring. The NGS project is part of the Exploring for the Future (EFTF) program—an eight-year, $225 million Australian Government funded geoscience data and precompetitive information acquisition program. The program seeks to inform decision-making by government, community, and industry on the sustainable development of Australia's mineral, energy, and groundwater resources, including those to support the effective long-term management of GAB water resources. This work builds on the first iteration completed as part of the Great Artesian Basin Groundwater project (Vizy & Rollet, 2022; Rollet et al., 2022), and infills previous data and knowledge gaps in the GAB and LEB with additional borehole, airborne electromagnetic and seismic interpretation. The Vshale values calculated on additional wells in the southern Surat and southern Eromanga basins and in the whole of Carpentaria and Lake Eyre basins provide higher resolution facies variability estimates from the distribution of generalised sand-shale ratio across the 18 GAB-LEB hydrogeological units. The data reveals a complex mixture of sedimentary environments in the GAB, and highlights sand body development and hydraulic characteristics within aquifers and aquitards. Understanding the regional extents of these sand-rich areas provides insights into potential preferential flow paths, within and between the GAB and LEB, and aquifer compartmentalisation. However, there are limitations that require further study, including data gaps and the need to integrate petrophysics and hydrogeological data. Incorporating major faults and other structures would also enhance our understanding of fluid flow pathways. The revised Vshale model, incorporating additional boreholes to a total of 2,310 boreholes, contributes to our understanding of groundwater flow and connectivity in the region, from the recharge beds to discharge at springs, and Groundwater Dependant Ecosystems (GDEs). It also facilitates interbasinal connectivity analysis. This 3D Vshale model offers a consistent framework for integrating data from various sources, allowing for the assessment of water use impacts and climate change at different scales. It can be used to map groundwater knowledge across the GAB and identify areas that require long-term monitoring. Additionally, the distribution of boreholes with gamma ray logs used for the Vshale work in each GAB and LEB units (Norton & Rollet, 2022; 2023) is used to highlight areas where additional data acquisition or interpretation is needed in data-poor areas within the GAB and LEB units. The second iteration of surfaces with additional Vshale calculation data points provides more confidence in the distribution of sand bodies at the whole GAB scale. The current model highlights that the main Precipice, Hutton, Adori-Springbok and Cadna-owie‒Hooray aquifers are relatively well connected within their respective extents, particularly the Precipice and Hutton Sandstone aquifers and equivalents. The Bungil Formation, the Mooga Sandstone and the Gubberamunda Sandstone are partial and regional aquifers, which are restricted to the Surat Basin. These are time equivalents to the Cadna-owie–Hooray major aquifer system that extends across the Eromanga Basin, as well as the Gilbert River Formation and Eulo Queen Group which are important aquifers onshore in the Carpentaria Basin. The current iteration of the Vshale model confirms that the Cadna-owie–Hooray and time equivalent units form a major aquifer system that spreads across the whole GAB. It consists of sand bodies within multiple channel belts that have varying degrees of connectivity' i.e. being a channelised system some of the sands will be encased within overbank deposits and isolated, while others will be stacked, cross-cutting systems that provide vertical connectivity. The channelised systemtransitions vertically and laterally into a shallow marine environment (Rollet et al., 2022). Sand-rich areas are also mapped within the main Poolowanna, Brikhead-Walloon and Westbourne interbasinal aquitards, as well as the regional Rolling Downs aquitard that may provide some potential pathways for upward leakage of groundwater to the shallow Winton-Mackunda aquifer and overlying Lake Eyre Basin. Further integration with hydrochemical data may help groundtruth some of these observations. This metadata document is associated with a data package including: • Seventeen surfaces with Vshale property (Table 1), • Seventeen surfaces with less than 40% Vshale property (Table 2), • Twenty isochore with average Vshale property (Table 3), • Twenty isochore with less than 40% Vshale property (Table 4), • Sixteen Average Vshale intersections of less than 40% Vshale property delineating potential connectivity between isochore (Table 5), • Sixteen Average Vshale intersections of less than 40% Vshale property delineating potential connectivity with isochore above and below (Table 6), • Seventeen upscaled Vshale log intersection locations (Table 7), • Six regional sections showing geology and Vshale property (Table 8), • Three datasets with location of boreholes, sections, and area of interest (Table 9).
-
<p>Geoscience Australia completed a regional assessment of the geological carbon dioxide (CO2) storage potential and petroleum prospectivity of the Browse Basin, offshore northwest Australia. This dual-purpose basin analysis study provided a new understanding of the basin’s Cretaceous succession based on new information regarding basin evolution, sequence stratigraphy, structural architecture and petroleum systems. The basin’s tectonostratigraphic framework was updated, and the integration of revised and recalibrated biostratigraphic data with well log and seismic interpretations has enabled an improved understanding of variations in depositional facies and the spatial distribution of reservoir, seal, and source rock sections. The outputs include models and maps of environments of deposition, play fairways, common risk element maps for regional-scale assessment of CO2 storage potential and petroleum systems model (Abbott et al., 2016; Edwards et al., 2015, 2016; Grosjean et al., 2015; Palu et al., 2017a and b; Rollet et al., 2016b, 2017a,b, 2018).<p> <p>This data pack includes 12 Cretaceous and Cenozoic horizons, and the regional fault maps produced from this study. This interpretation is based on data from 60 wells (Table 1) and 26 regional 2D and 3D seismic reflection surveys (Table 2) (Rollet et al., 2016a). Surfaces were converted from TWT to depth and integrated in a 3D geological model as input into a petroleum systems model (Palu et al., 2017a, b). <p>Data layers include: <p>12 regional depth surface grids and arcmap files generated for key Cretaceous and Cenozoic horizons (Figure 1; Table 3): K10.0_SB (late Tithonian), K20.0_SB (Valanginian), K30.0_SB (Late Hauterivian), K40.0_SB (Aptian), K50.0_SB (Late Cenomanian), K60.0_SB (Early Campanian), K65.0_SB (Maastrichtian), T10.0_SB (Base Cenozoic), T24.0_SB (Ypresian), T30.0_SB (Rupelian), T33.0_SB (Aquitanian) and water bottom based on bathymetry after Whiteway (2009), <p>2 fault population shapefiles (Figure 2): polygon envelop of shallow faults that formed during the Cenozoic collision between Australia and Asia, and horizon fault boundaries of deep regional faults that were formed through the Permian to Cretaceous.
-
This service delivers the base of Cenozoic surface and Cenozoic thickness grids for the west Musgrave province. The gridded data are a product of 3D palaeovalley modelling based on airborne electromagnetic conductivity, borehole and geological outcrop data, carried out as part of Geoscience Australia's Exploring for the Future programme. The West Musgrave 3D palaeovalley model report and data files are available at https://dx.doi.org/10.26186/149152.
-
This service delivers the base of Cenozoic surface and Cenozoic thickness grids for the west Musgrave province. The gridded data are a product of 3D palaeovalley modelling based on airborne electromagnetic conductivity, borehole and geological outcrop data, carried out as part of Geoscience Australia's Exploring for the Future programme. The West Musgrave 3D palaeovalley model report and data files are available at https://dx.doi.org/10.26186/149152.
-
<div>The Lake Eyre surface water catchment covers around 1,200,000 km2 of central Australia, about one-sixth of the entire continent. It is one of the largest endorheic river basins in the world and contains iconic arid streams such as the Diamantina, Finke and Georgina rivers, and Cooper Creek. The Lake Eyre region supports diverse native fauna and flora, including nationally significant groundwater-dependent ecosystems such as springs and wetlands which are important cultural sites for Aboriginal Australians.</div><div><br></div><div>Much of the Lake Eyre catchment is underlain by the geological Lake Eyre Basin (LEB). The LEB includes major sedimentary depocentres such as the Tirari and Callabonna sub-basins which have been active sites of deposition throughout the Cenozoic. The stratigraphy of the LEB is dominated by the Eyre, Namba and Etadunna formations, as well as overlying Pliocene to Quaternary sediments.</div><div><br></div><div>The National Groundwater Systems Project, part of Geoscience Australia's Exploring for the Future Program (https://www.eftf.ga.gov.au/), is transforming our understanding of the nation's major aquifer systems. With an initial focus on the Lake Eyre Basin, we have applied an integrated geoscience systems approach to model the basin's regional stratigraphy and geological architecture. This analysis has significantly improved understanding of the extent and thickness of the main stratigraphic units, leading to new insights into the conceptualisation of aquifer systems in the LEB.</div><div><br></div><div>Developing the new understanding of the LEB involved compilation and standardisation of data acquired from thousands of petroleum, minerals and groundwater bores. This enabled consistent stratigraphic analysis of the major geological surfaces across all state and territory boundaries. In places, the new borehole dataset was integrated with biostratigraphic and petrophysical data, as well as airborne electromagnetic (AEM) data acquired through AusAEM (https://www.eftf.ga.gov.au/ausaem). The analysis and integration of diverse geoscience datasets helped to better constrain the key stratigraphic horizons and improved our overall confidence in the geological interpretations.</div><div><br></div><div>The new geological modelling of the LEB has highlighted the diverse sedimentary history of the basin and provided insights into the influence of geological structures on modern groundwater flow systems. Our work has refined the margins of the key depocentres of the Callabonna and Tirari sub-basins, and shown that their sediment sequences are up to 400 m thick. We have also revised maximum thickness estimates for the main units of the Eyre Formation (185 m), Namba Formation (265 m) and Etadunna Formation (180 m).</div><div><br></div><div>The geometry, distribution and thickness of sediments in the LEB is influenced by geological structures. Many structural features at or near surface are related to deeper structures that can be traced into the underlying Eromanga and Cooper basins. The occurrence of neotectonic features, coupled with insights from geomorphological studies, implies that structural deformation continues to influence the evolution of the basin. Structures also affect the hydrogeology of the LEB, particularly by compartmentalising groundwater flow systems in some areas. For example, the shallow groundwater system of the Cooper Creek floodplain is likely segregated from groundwater in the nearby Callabonna Sub-basin due to structural highs in the underlying Eromanga Basin.</div><div> Abstract submitted and presented at the 2023 Australian Earth Science Convention (AESC), Perth WA (https://2023.aegc.com.au/)
-
The Solid Geology of the North Australian Craton web service delivers a seamless chronostratigraphic solid geology dataset of the North Australian Craton that covers north of Western Australia, Northern Territory and north-west Queensland. The data maps stratigraphic units concealed under cover by effectively removing the overlying cover (Liu et al., 2015). This dataset comprises five chronostratigraphic time slices, namely: Cenozoic, Mesozoic, Paleozoic, Neoproterozoic, and Pre-Neoproterozoic.
-
The Solid Geology of the North Australian Craton web service delivers a seamless chronostratigraphic solid geology dataset of the North Australian Craton that covers north of Western Australia, Northern Territory and north-west Queensland. The data maps stratigraphic units concealed under cover by effectively removing the overlying cover (Liu et al., 2015). This dataset comprises five chronostratigraphic time slices, namely: Cenozoic, Mesozoic, Paleozoic, Neoproterozoic, and Pre-Neoproterozoic.
-
The Solid Geology of the North Australian Craton web service delivers a seamless chronostratigraphic solid geology dataset of the North Australian Craton that covers north of Western Australia, Northern Territory and north-west Queensland. The data maps stratigraphic units concealed under cover by effectively removing the overlying cover (Liu et al., 2015). This dataset comprises five chronostratigraphic time slices, namely: Cenozoic, Mesozoic, Paleozoic, Neoproterozoic, and Pre-Neoproterozoic.
-
<div>The Kati Thanda – Lake Eyre Basin (KT–LEB) covers about 1.2 million square kilometres of outback Australia. Although the basin is sparsely populated and relatively undeveloped it hosts nationally significant environmental and cultural heritage, including unique desert rivers, sweeping arid landscapes, and clusters of major artesian springs. The basin experiences climatic extremes that intermittently cycle between prolonged droughts and massive inland floods, with groundwater resources playing a critical role in supporting the many communities, industries, ecological systems, and thriving First Nations culture of the KT–LEB.</div><div><br></div><div>As part of Geoscience Australia’s National Groundwater Systems Project (in the Exploring for the Future Program) this report brings together contemporary data and information relevant to understanding the regional geology, hydrogeology and groundwater systems of Cenozoic rocks and sediments of the KT–LEB. This work represents the first whole-of-basin assessment into these vitally important shallow groundwater resources, which have previously received far less scientific attention than the deeper groundwater systems of the underlying Eromanga Basin (part of the Great Artesian Basin). The new knowledge and insights about the geology and hydrogeology of the basin generated by this study will benefit the many users of groundwater within the region and will help to improve sustainable management and use of groundwater resources across the KT–LEB.</div><div><br></div>
-
To meet the increasing demand for natural resources globally, industry faces the challenge of exploring new frontier areas that lie deeper undercover. Here, we present an approach to, and initial results of, modelling the depth of four key chronostratigraphic packages that obscure or host mineral, energy and groundwater resources. Our models are underpinned by the compilation and integration of ~200 000 estimates of the depth of these interfaces. Estimates are derived from interpretations of newly acquired airborne electromagnetic and seismic reflection data, along with boreholes, surface and solid geology, and depth to magnetic source investigations. Our curated estimates are stored in a consistent subsurface data repository. We use interpolation and machine learning algorithms to predict the distribution of these four packages away from the control points. Specifically, we focus on modelling the distribution of the base of Cenozoic-, Mesozoic-, Paleozoic- and Neoproterozoic-age stratigraphic units across an area of ~1.5 million km2 spanning the Queensland and Northern Territory border. Our repeatable and updatable approach to mapping these surfaces, together with the underlying datasets and resulting models, provides a semi-national geometric framework for resource assessment and exploration. <b>Citation:</b> Bonnardot, M.-A., Wilford, J., Rollet, N., Moushall, B., Czarnota, K., Wong, S.C.T. and Nicoll, M.G., 2020. Mapping the cover in northern Australia: towards a unified national 3D geological model. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.