hydrology
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
The Surface Hydrology Points (Regional) dataset provides a set of related features classes to be used as the basis of the production of consistent hydrological information. This dataset contains a geometric representation of major hydrographic point elements - both natural and artificial. This dataset is the best available data supplied by Jurisdictions and aggregated by Geoscience Australia it is intended for defining hydrological features.
-
Mean monthly and mean annual rainfall grids. The grids show the rainfall values across Australia in the form of two-dimensional array data. The mean data are based on the standard 30-year period 1961-1990. Gridded data were generated using the ANU (Australian National University) 3-D Spline (surface fitting algorithm). The resolution of the data is 0.025 degrees ( approximately 2.5km) - as part of the 3-D analysis process a 0.025 degree resolution digital elevation model (DEM) was used. Approximately 6000 stations were used in the analysis over Australia. All input station data underwent a high degree of quality control before analysis, and conform to WMO (World Meteorological Organisation) standards for data quality.
-
Mean monthly and mean annual maximum, minimum & mean temperature grids. The grids show the temperature values across Australia in the form of two-dimensional array data. The mean data are based on the standard 30-year period 1961-1990. Gridded data were generated using the ANU (Australian National University) 3-D Spline (surface fitting algorithm). As part of the 3-D analysis process a 0.025 degree resolution digital elevation model (DEM) was used. The grid point resolution of the data is 0.025 degrees (approximately 2.5km). Approximately 600 stations were used in the analysis over Australia. All input station data underwent a high degree of quality control before analysis, and conform to WMO (World Meteorological Organisation) standards for data quality.
-
This dataset was created for the National Geochemical Survey of Australia (NGSA) to help determine the location of target sites for sampling catchment outlet sediments in the lower reach of defined river catchments. Each polygon represents a surface drainage catchment derived from a national scale 9 second (approximately 250 m) resolution digital elevation model. Catchments were extracted from an unpublished, interim version of a nested catchment framework with an optimal catchment area of 5000 km2. Only catchments from the Australian mainland and Tasmania were included. In order to generate catchments approaching the optimal area, catchments with an area of less than 1000 km2 were excluded from the dataset, while other small catchments were amalgamated, and catchments much larger than 5000 km2 were split.
-
Shows the boundaries of the Australian basins as defined by the Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ). This data shows boundary and attribute information for 12 divisions, 77 regions and 245 basins. It also contains, for each basin, information relating to its individual basin/region/division name and number. State borders are also included in the data. Data for Division XIII Distant Islands Division is not included. These basins are the primary building block for the collection of national hydrologic data and the assessment of water resources. Data are suitable for GIS applications. Free online download. Available in ArcView Shapefile and MapInfo mid/mif. Product Specifications Coverage: Australia Currency: June 1997 Coordinates: Geographical Datum: AGD66 Format: ArcInfo Export, ArcView Shapefile and MapInfo mid/mif Medium: Free online and CD-ROM (fee applies)
-
Floodplain vegetation can be degraded from both too much and too little water due to regulation. Over-regulation and increased use of groundwater in these landscapes can exacerbate the effects related to natural climate variability. Prolonged flooding of woody plants has been found to induce a number of physiological disturbances such as early stomatal closure and inhibition of photosynthesis. However drought conditions can also result in leaf biomass reduction and sapwood area decline. Depending on the species, different inundation and drought tolerances are observed. This paper focuses specifically on differing lake level management practices in order to assess associated environmental impacts. In western NSW, two Eucalyptus species, River Red Gum (E. camaldulensis) and Black Box (E. largiflorens) have well documented tolerances and both are located on the fringes of lakes in the Menindee Lakes Storage Water scheme. Flows to these lakes have been controlled since 1960 and lake levels monitored since 1979. Pre-regulation aerial photos indicate a significant change to the distribution of lake-floor and fringing vegetation in response to increased inundation frequency and duration. In addition, by coupling historic lake water-level data with a Landsat satellite imagery, spatial and temporal vegetation response to different water regimes has been observed. Two flood events specifically investigated are the 2010/11 and 1990 floods. Results from this analysis provide historic examples of vegetation response to lake regulation including whether recorded inundation duration and frequency resulted in positive or negative impacts, the time delay till affects become evident, duration of observed response and general recovery/reversal times. These findings can be used to inform ongoing water management decisions.
-
Mean monthly and mean annual areal actual, areal potential and point potential evapotranspiration grids. The grids show the evapotranspiration values across Australia in the form of two-dimensional array data. The mean data are based on the standard 30-year period 1961-1990. Gridded data were generated using the ANU (Australian National University) 3-D Spline (surface fitting algorithm). The grid point resolution of the data is 0.1 degrees ( approximately 10km). As part of the 3-D analysis process a 0.1 degree resolution digital elevation model (DEM) was used. Approximately 700 stations were used in the analysis, and all input station data underwent a high degree of quality control before analysis, and conform to WMO (World Meteorological Organisation) standards for data quality. Areal Actual ET is the ET that actually takes place, under the condition of existing water supply, from an area so large that the effects of any upwind boundary transitions are negligible and local variations are integrated to an areal average. Areal Potential ET is the ET that would take place, under the condition of unlimited water supply, from an area so large that the effects of any upwind boundary transitions are negligible and local variations are integrated to an areal average. Point Potential ET is the ET that would take place, under the condition of unlimited water supply, from an area so small that the local ET effects do not alter local airmass properties. It is assumed that latent and sensible heat transfers within the height of measurement are through convection only. The above definitions are based on those given by Morton (1983), but we have used the term areal potential ET for Mortons wet-environment ET and the term point potential ET for Mortons potential ET. Morton, F.I. (1983). Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. Journal of Hydrology, 66: 1-76.
-
The 9 second DEM derived streams are a a fully connected and directed stream network produced in rastor and vector fomats by Australian National University. This product is the raster format, for the the vector product please refer to the Bureau of Meterology's Geofabric Website (http://www.bom.gov.au/water/geofabric/index.shtml). It is built upon the representation of surface drainage patterns provided by the GEODATA national 9 second Digital Elevation Model (DEM) Version 3 (ANU Fenner School of Environment and Society and Geoscience Australia, 2008).
-
Contains a medium scale vector representation of the topography of Australia. The data include the following themes: Hydrography - drainage networks including watercourses, lakes, wetlands, bores and offshore features; Infrastructure - constructed features to support road, rail and air transportation as well as built-up areas, localities and homesteads. Utilities, pipelines, fences and powerlines are also included; Relief - features depicting the terrain of the earth including 50 metre contours, spot heights, sand dunes, craters and cliffs; Vegetation - depicting forested areas, orchards, mangroves, pine plantations and rainforests; and Reserved Areas - areas reserved for special purposes including nature conservation reserves, aboriginal reserves, prohibited areas and water supply reserves.
-
This paper presents the application of a neural network methodology to historical time series of GPS data from the global GPS network, based on terrestrial water storage information. Hydrology signals at the global GPS sites are important for including water loading corrections in GPS data processing. However, it is quite common that a correct global water storage model may not be available for this purpose, due to lack of science data. It is therefore mostly assumed that water mass redistribution is one of the potential contributors to the seasonal variations in GPS station position results, particularly, in the vertical direction. Presently, the IERS Special Bureau for Hydrology (SBH) has archived continental water storage data from some of the latest model developments. Examples include the monthly (GRACE, NOAA CPC, NCEP/NCAR CDAS-1) and daily (NCEP/NCAR and ECMWF reanalyses) solutions. It is valuable to study the relationship between these solutions and long-term geodetic results, especially as the water storage models continue to be refined. Using neural networks offers an effective approach to correlate the non-linear input of hydrology signals and output of geodetic results by recognizing the historic patterns between them. In this study, a neural network model is developed to enable the prediction of GPS height residuals based on the input of NOAA CPC hydrology data. The model is applied to eight global GPS sites with satisfactory results.