From 1 - 10 / 42
  • <div>Previous work by the SA government and CSIRO[i] highlighted the value of integrating AEM data with other geological and hydrogeological data to model palaeovalley groundwater systems and develop regional hydrogeological conceptualisations. This allows better-informed water supply decisions and management for communities in remote parts of Australia where these systems provide the only available and long-term water resource. The Exploring for the Future Musgrave Palaeovalley module seeks to apply similar work flows across the western Musgrave Province and adjacent Officer and Canning basins.</div><div>Open file mineral exploration AEM data from 11 surveys in WA and SA flown between 2009 and 2012 were re-processed and inverted to produce conductivity models and a suite of derived datasets. Geoscience Australia’s Layered-Earth-Inversion was used as a single standard processing and inversion method to improve continuity and data quality.</div><div>These legacy AEM data, originally for mineral exploration, have been incorporated with DEM-derived landscape attributes, previous palaeovalley mapping and available bore lithologies to model palaeovalley base surfaces. This presentation will provide an example from four blocks of AEM data to show how repurposing data from mineral exploration, public bore data and landscape analysis can be used to identify palaeovalley systems which provide critical water supplies for remote and regional communities and industry[ii].</div><div>This approach can be used to model palaeovalley systems from a range of geoscientific and other datasets. The Exploring for the Future Musgrave Palaeovalley module has acquired ~23,000 line km of AEM across parts of WA and the NT at line spacings of 1 and 5 km. This new precompetitive data will be used to model palaeovalley system geometry and integrate with new and existing AEM, drilling, landscape, groundwater chemistry and surface geophysics data to test hydrogeological conceptualisations of these groundwater systems.</div><div><br></div><div><br></div><div> [i] Costar, A., Love, A., Krapf, C., Keppel, M., Munday, T., Inverarity, K., Wallis, I. &&nbsp;Sørensen, C. (2019). Hidden water in remote areas – using innovative exploration to uncover the past in the Anangu Pitjantjatjara Yankunytjatjara Lands. MESA Journal 90(2), 23 - 35 pp.</div><div>Krapf, C., Costar, A., Stoian, L., Keppel, M., Gordon, G., Inverarity, K., Love, A. &&nbsp;Munday, T. (2019). A sniff of the ocean in the Miocene at the foothills of the Musgrave Ranges - unravelling the evolution of the Lindsay East Palaeovalley. MESA Journal 90(2), 4 - 22 pp.</div><div>Krapf, C. B. E., Costar, A., Munday, T., Irvine, J. A. & Ibrahimi, T., 2020. Palaeovalley map of the Anangu Pitjantjatjara Yankunytjatjara Lands (1st edition), 1:500 000 scale. Goyder Institute for Water Research, Geological Survey of South Australia, CSIRO.</div><div>https://sarigbasis.pir.sa.gov.au/WebtopEw/ws/samref/sarig1/wci/Record?r=0&m=1&w=catno=2042122. </div><div>Munday, T., Taylor, A., Raiber, M., Sørensen, C., Peeters, L. J. M., Krapf, C., Cui, T., Cahill, K., Flinchum, B., Smolanko, N., Martinez, J., Ibrahimi, T. &&nbsp;Gilfedder, M., 2020a. Integrated regional hydrogeophysical conceptualisation of the Musgrave Province, South Australia, Goyder Institute for Water Research Technical Report Series 20/04, Goyder Institute for Water Research, Adelaide.</div><div>Munday, T., Gilfedder, M., Costar, A., Blaikie, T., Cahill, K., Cui, T., Davis, A., Deng, Z., Flinchum, B., Gao, L., Gogoll, M., Gordon, G., Ibrahimi, T., Inverarity, K., Irvine, J., Janardhanan, Sreekanth, Jiang, Z., Keppel, M., Krapf, C., Lane, T., Love, A., Macnae, J., Mariethoz, G., Martinez, J., Pagendam, D., Peeters, L., Pickett, T., Robinson, N., Siade, A., Smolanko, N., Sorensen, C., Stoian, L., Taylor, A., Visser, G., Wallis, I. &&nbsp;Xie, Y., 2020b. Facilitating Long-term Outback Water Solutions (G-Flows Stage 3): Final Summary Report. Goyder Institute for Water Research, Adelaide, http://hdl.handle.net/102.100.100/376125?index=1. </div><div>[ii] Symington, N. J., Ley-Cooper, Y. A. &&nbsp;Smith, M. L., 2022. West Musgrave AEM conductivity models and data release. Geoscience Australia, Canberra, https://pid.geoscience.gov.au/dataset/ga/146278.&nbsp;</div> This Abstract was submitted/presented to the 2022 Sub 22 Conference 28-30 November (http://sub22.w.tas.currinda.com/)

  • To unlock the potential of one of the largest underexplored onshore areas in Australia, the Exploring for the Future Officer-Musgrave project is delivering a wide array of publicly available new analyses and data. The collection of new AEM data, as well as the reprocessing of existing industry acquired AEM data is expected to improve the understanding of groundwater systems in the Officer-Musgrave region. New regional scale data acquisition and analysis, including stratigraphic, petrophysical and geomechanical studies from existing wells, focus on advancing understanding of petroleum systems elements and assist the exploration and evaluation of conventional and unconventional petroleum resources. Here we provide an overview of available new datasets and insights into the stratigraphy of the Officer Basin. Further analysis is underway including well log digitisation, fluid inclusion analysis and a petrographic report on Officer Basin wells. This work is expected to further improve geological knowledge and reduce the energy exploration risk of the Officer Basin, a key focus of this program. <b>Citation: </b>Carr L. K., Henson P., Wang L., Bailey A., Fomin T., Boreham C., Edwards D., Southby C., Symington N., Smith M., Halas L. & Jones T, 2022. Exploring for the Future in the Officer Musgrave region. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/146988

  • Geoscience Australia commissioned reprocessing of selected legacy 2D seismic data in the Officer Basin in South Australia as part of the Exploring for the Future (EFTF) program. Reprocessing of these data occurred between April 2021 and August 2021. This seismic data release package contains reprocessed data from five surveys acquired between 1966 and 1987. In total it contains approximately 1425 km of industry 2D reflection seismic data comprising of 25 lines from 5 separate vintages. The seismic surveys include the Serpentine Lakes Reconnaissance Survey, 1966; the Everard Survey, 1974; the Marla Bore Survey, 1984; the Ungoolya, Giles and Marla-Byilkaoora Surveys, 1985; and the Amoco Officer Basin Survey, 1987 and cover areas within the Officer Basin in South Australia. The objective of the seismic reprocessing was to produce processed 2D land seismic reflection datasets using the latest processing techniques to improve continuity and data quality over legacy processing. In particular, the purpose of the reprocessing was to image the structure and stratigraphic architecture of the Neoproterozoic to Paleozoic Officer Basin in this area. All vintages except the 1966 Serpentine lakes survey were processed to Pre-stack Time Migration as well as Post-Stack Time Migration. The 1966 Serpentine Lakes Survey was processed only to Post-Stack Time Migration. <b>The Velseis data package is available on request from clientservices@ga.gov.au - Quote eCat# 145905</b>

  • The Officer Basin spanning South Australia and Western Australia is the focus of a regional stratigraphic study being undertaken as part of the Exploring for the Future (EFTF) program, an Australian Government initiative dedicated to increasing investment in resource exploration in Australia. Despite numerous demonstrated oil and gas shows, the Officer Basin remains a frontier basin for energy exploration with significant uncertainties due to data availability. Under the EFTF Officer-Musgrave Project, Geoscience Australia acquired new geomechanical rock property data from forty core samples in five legacy stratigraphic and petroleum exploration wells that intersected Paleozoic and Neoproterozoic aged intervals. These samples were subjected to unconfined compressive rock strength tests, Brazilian tensile strength tests and laboratory ultrasonic measurements. Petrophysical properties were also characterised via X-ray computerised tomography scanning, grain density and porosity-permeability analysis. Accurate characterisation of static geomechanical rock properties through laboratory testing is essential. In the modern exploration environment, these datasets are a precompetitive resource that can simplify investment decisions in prospective frontier regions such as the Officer Basin. Appeared in The APPEA Journal 62 S385-S391, 13 May 2022

  • Exploring for the Future (EFTF) is an Australian Government program led by Geoscience Australia (GA), in partnership with state and Northern Territory governments. The EFTF program (2016-2024) aims to drive industry investment in resource exploration in frontier regions of onshore Australia by providing new precompetitive data and information about their energy, mineral and groundwater resource potential. Under the EFTF program, the Onshore Energy Project undertook a study of petroleum prospectivity of the onshore Officer Basin in South Australia and Western Australia. Birksgate 1 well in South Australia was selected based on the occurrence of gas and oil shows reported in the well completion report. Sampling of cuttings and cores was done at Geoscience Australia's Petroleum Data Repository in Canberra. Geoscience Australia commissioned a fluid inclusion stratigraphy (FIS) study on the downhole samples. Here, volatile components ostensibly trapped with fluid inclusions are released and analysed revealing the level of exposure of the well section to migrating fluids. Integration of thin section (TS) preparations reveal to extent of gas and fluid trapping within fluid inclusions while microthemometry (MT) gives an estimation of fluid inclusion trapping temperature. For Birksgate 1, FIS analysis was performed on 414 cuttings and 33 cores between 150 feet and 6161 feet base depth, together with 14 samples prepared for TS and 3 samples for MT. To support this study, lithostratigraphic tops were compiled by Geoscience Australia. The results of the study are found in the accompanying documents.

  • <div>This report details results and methodology from two hydrochemistry sampling programs performed as part of Geoscience Australia’s Musgrave Palaeovalley Project. The Musgrave Palaeovalley Project is a data acquisition and scientific investigation program based around the central west of Australia. It is aimed at investigating groundwater processes and resources within the Cenozoic fill and palaeovalleys of the region. This project, and many others, have been performed as part of the Exploring for the Future (EFTF) program, an eight-year, $225 million Australian Government funded geoscience data and precompetitive information acquisition program.</div><div>Data released here is from 18 bores sampled for groundwater and tested for a range of analytes including field parameters, major and minor elements, isotopes and trace gases. The sampling methods, quality assurance/quality control procedures, analytical methods and results are included in this report.</div>

  • As part of the $225 million Exploring for the Future programme, Geoscience Australia have undertaken an investigation into the resource potential of the Officer-Musgrave-Birrindudu region. Part of this project focusses on characterising palaeovalley groundwater resources within the West Musgrave region of Australia. This record presents a three-dimensional palaeovalley model and describes the method used in its generation. Understanding the 3D architecture of palaeovalleys is an important component of conceptualising the shallow groundwater system. In this region groundwater is the only significant water resource, and is critical for supporting local communities, industries and the environment. The data products released alongside this record are a base of gridded Cenozoic surface, a grid of the thickness of the Cenozoic and polygons defining the spatial extent of palaeovalleys. The study area encompasses the upper reaches of several large palaeovalleys. These valleys incised mostly crystalline rocks of the Musgrave Province and sedimentary rocks of the adjoining basin during the late Cretaceous. Subsequently, valleys were filled by Cenozoic-aged sediments, which now form the aquifers and aquitards of the modern-day groundwater system. Palaeovalley architecture has been shaped by a complex interplay of climatic, tectonic, and geological factors over geological time. In some cases, tectonic deformation has caused tilting or disruption of palaeovalleys with implications for groundwater flow. We modelled the base of Cenozoic surface across the project area and used this geological surface to identify palaeovalleys. The modelling process used airborne electromagnetic conductivity models, borehole data and geological outcrop as model inputs. Using these data, we interpreted the base of Cenozoic along AEM flightlines, at borehole locations and at the surface where Pre-Cenozoic geology was cropping out. These data were gridded to generate the base of Cenozoic surface. This surface was then used as the basis for interpreting palaeovalley extents. The resulting model is adequate for its purpose of better understanding the groundwater system. However, the model has considerable uncertainty due to uncertainty in the model inputs and data sparsity. The model performed much better within the centre of the project area within the Musgrave Province compared to the adjoining basins.

  • Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. The Paleo to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin located in northwestern Northern Territory and northeastern Western Australia. The Birrindudu Basin is a region of focus for the second phase of the EFTF program (2020–2024) as it contains strata of similar age to the prospective McArthur Basin, South Nicholson region and Mount Isa Province, but remains comparatively poorly understood. Geoscience Australia have undertaken (via the service provider, FIT, Schlumberger) stratigraphic reconstructions of bulk volatile chemistry from fluid inclusions from the NTGS stratigraphic drillhole 99VRNTGSDD1, Birrindudu Basin, located in the northwest Northern Territory. This ecat record releases the final report containing the results of fluid inclusion stratigraphy, thin section and microthermometry analyses, raw data files (*.LAS) and rock descriptions by FIT Schlumberger. Company reference number FI230005c.

  • Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. The Paleo to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin located in northwestern Northern Territory and northeastern Western Australia. The Birrindudu Basin is a region of focus for the second phase of the EFTF program (2020–2024) as it contains strata of similar age to the prospective McArthur Basin, South Nicholson region and Mount Isa Province, but remains comparatively poorly understood. Geoscience Australia have undertaken (via the service provider, FIT, Schlumberger) stratigraphic reconstructions of bulk volatile chemistry from fluid inclusions from an mineral exploration drillhole LBD2, Birrindudu Basin, located in the northwest Northern Territory This ecat record releases the final report and raw data files (*.LAS) by FIT Schlumberger. Company reference number FI230005a.

  • <div>The Northwest Northern Territory Seismic Survey (NW NT Seismic Survey) was acquired as part of the Australian Government's Exploring for the Future (EFTF) program, conducted from 5 August to 20 September 2023. This ambitious project is a collaboration between Geoscience Australia and the Northern Territory Geological Survey, aimed to systematically map the subsurface geology of a significant yet largely unexplored region of Australia. Covering an extensive area that includes the Birrindudu Basin, Kalkarindji Suite, Tanami, and Wolfe Basin, the survey successfully acquired about 846 kilometers of high-resolution seismic data across four seismic transects, specifically designated as 23GA-NT1 (54.5 km and 184.5 km in two separate sections), 23GA-NT2 (112 km), 23GA-NT3 (221.46 km), and 23GA-NT4 (274.2 km).</div><div><br></div><div>This seismic campaign is part of a strategic effort to illuminate the geological framework and evaluate the resource potential within these regions, which are considered highly prospective for minerals, geoenergy, geological storage and groundwater resources. By deploying advanced seismic acquisition technologies to capture detailed images of the Earth's crust, this survey provides foundational data for identifying the region's geological features and resource potential, such as basin geometry and fault systems. The data derived from this survey are expected to play a pivotal role in guiding future exploration activities, attracting investment to the region, and ultimately contributing to the sustainable development of Australia's natural resources.</div><div><br></div><div>The project underscores the commitment of the Australian Government and its partners to enhance the geoscientific understanding of the continent's frontier regions. The findings from the NW NT Seismic Survey will advance our knowledge of Australia's geology and unlock new opportunities for exploration and economic development in the northwest Northern Territory. Through the dissemination of precompetitive geoscience data, the EFTF program continues to foster innovation and collaboration across the exploration sector, ensuring that Australia remains at the forefront of global efforts to secure a sustainable and prosperous future.</div><div><br></div> <b>To access the survey data and related products, please contact clientservices@ga.gov.au and quote eCat#149287. The following products are available, with some accessible via direct download and others available upon request: Products Available for Direct Download: — Processed stack – DMO, Post-stack Time Migration, Prestack Time Migration — Published on 28/06/2024 – Prestack Depth Migration — Published on 30/07/2024 Products Available via Request: — Field data (Raw Shot Gathers, SPS files, Observer Logs, Ancillary Data, etc.) — Published on 13/03/2024 </b>