Magnetic
Type of resources
Keywords
Publication year
Service types
Topics
-
<div>This report contains information about the operation of Geoscience Australia’s ten permanent geomagnetic observatories, repeat stations and other relevant information covering the period from 2017 to 2021.</div><div>Information regarding the activities and services of Geoscience Australia’s Geomagnetism program, distribution of geomagnetic data, geomagnetic instrumentation and data processing procedures is also provided.</div><div><br></div>
-
NDI Carrara 1 is a deep stratigraphic drill hole completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-Basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) recently acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1100 m of Proterozoic sedimentary rocks uncomformably overlain by 630 m of Cambrian Georgina Basin carbonates. A comprehensive geochemical program designed to provide information about the region’s resource potential was carried out on samples collected at up to 4 meter intervals. This report presents data from magnetic susceptibility analyses undertaken by Geoscience Australia on selected rock samples to establish their ability to be magnetised in an applied external magnetic field.
-
<div>Near-surface magnetizations are ubiquitous across many areas of Australia and complicate reliable estimation of depth to deeper magnetizations. We have selected four test areas in which we use equivalent source dipoles to represent and quantify the near-surface magnetizations. We present a synthetic modelling study that demonstrates that field variations from the near-surface magnetizations substantially degrade estimation of depth to a magnetization 500 metres below the modelled sensor elevation and that these problems persist even for anomalies with significantly higher amplitudes. However, preferential attenuation of the fields from near surface magnetizations by upward continuation proved quite effective in improving estimation of depth to those magnetizations.</div> This Abstract was submitted/presented at the 2023 Australasian Exploration Geoscience Conference (AEGC) 13-18 March (https://2023.aegc.com.au/)
-
<div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. This work contributes to building a better understanding of the Australian continent, whilst giving the Australian public the tools they need to help them make informed decisions in their areas of interest.</div><div><br></div><div>As part of the Australia's Resources Framework Project, in the Exploring for the Future Program, Geoscience Australia and CSIRO undertook a magnetic source depth study across four areas, with the objectives of generating cover model constraints from magnetic modelling to expand national coverage, and to improve our subsurface understanding of these areas. During this study, 2005 magnetic estimates of depth to the top of magnetization were generated, with solutions derived using a consistent methodology (targeted magnetic inversion modelling, or TMIM; also known as ‘sweet-spot’ modelling). The methodology for these estimates are detailed in a summary report by Foss et al (2024), and is available for download through Geoscience Australia’s enterprise catalogue (https://pid.geoscience.gov.au/dataset/ga/149239). </div><div><br></div><div>The new points were generated over four areas: 1) the western part of Tasmania that is the southernmost extension of the Darling-Curnamona-Delamerian (DCD) project area; 2) northeastern Queensland; 3) the Officer Basin area of western South Australia and southeastern West Australia; and 4) the Eastern Resources Corridor (ERC), covering eastern South Australia, southwest Queensland, western New South Wales and western Victoria. These depth estimates have been released, together with a summary report detailing the data and methodology used to generate the results, through Geoscience Australia's product catalogue (ecat) at https://pid.geoscience.gov.au/dataset/ga/149239.</div><div><br></div><div>This supplementary data release contains the chronostratigraphic attribution of the new TMIM magnetic depth estimates, which range in depth from at surface to 13,294 m below ground. To ensure that the interpretations took into account the local geological features, the magnetic depth estimates were integrated and interpreted with other geological and geophysical datasets, including borehole stratigraphic logs, potential fields images, surface and solid geology maps, and airborne electromagnetic interpretations (where available). </div><div><br></div><div>Each depth-solution is interpretively ascribed to either a chronostratigraphic boundary with the stratigraphic units above and below the depth estimate, or the stratigraphic unit that the depth estimate occurs within, populated from the Australian Stratigraphic Units Database (ASUD). Stratigraphic attribution adds value and informs users of the depth to certain stratigraphic units in their areas of interest. Each solution is accompanied by confidence estimates. The depth estimate points are formatted for compliance with Geoscience Australia’s (GA) Estimates of Geological and Geophysical Surfaces (EGGS) database, the national repository for standardised depth estimate points. </div><div><br></div><div>Results from these interpretations provided some support to stratigraphic drillhole targeting, as part of the Delamerian Margins NSW National Drilling Initiative campaign, a collaboration between GA’s EFTF program, the MinEx CRC National Drilling Initiative and the Geological Survey of New South Wales. The magnetic depth-estimate solutions produced within this study provide important depth constraints in data-poor areas. These data help to construct a better understanding of the 3D geometry of the Australian continent and aid in cover thickness modelling activities. The availability of the depth-estimate solutions via the EGGS database through Geoscience Australia’s Portal creates enduring value to the public.</div>
-
The Geological Survey of South Australia (GSSA) designed the Gawler Craton Airborne Survey (GCAS) to provide high resolution magnetic, gamma-ray and elevation data covering the northern portion of the Gawler Craton. In total, 1.66 million line km were planned over an area of 295,000 km2 , covering approximately 30% of the state of South Australia. The survey design of 200 m spaced lines at a ground clearance of 60 m can be compared with the design of existing regional surveys which generally employed 400 m line spacing and a ground clearance of 80 m. The new survey design results in ~2 x the data coverage and ~25% closer to the ground when compared to previous standards for regional surveys in South Australia. Due to the enormous scale of the survey, the data were acquired using four contractors who employed ten systems to fly the sixteen blocks. To standardise the data from the multitude of systems, Geoscience Australia (GA) employed a comprehensive set of technical specifications. As part of these specifications the contractors were required to fly each of the ten systems over a series of test lines termed the “Whyalla Test Lines” (Whyalla). The final GCAS data provide truly impressive high resolution regional scale products. These will allow more detailed geological interpretation of the prospective Gawler Craton. Survey blocks available for download include: Tallaringa North, block 1A Tallaringa South, block 1B Coober Pedy West, block 8A Billa Kalina, block 8B Childara, block 9A Lake Eyre, block 10 The following grids are available in this download: • Laser-derived digital elevation model grids (m). Height relative to the Australian Height Datum. • Radar-derived digital elevation model grids (m). Height relative to the Australian Height Datum. • Total magnetic intensity grid (nT). • Total magnetic intensity grid with variable reduction to the pole applied (nT). • Total magnetic intensity grid with variable reduction to the pole and first vertical derivative applied (nT/m). • Dose rate concentration grid (nGy/hr). • Potassium concentration grid (%). • Thorium concentration grid (ppm). • Uranium concentration grid (ppm). • NASVD processed dose rate concentration grid (nGy/hr). • NASVD processed potassium concentration grid (%). • NASVD processed thorium concentration grid (ppm). • NASVD processed uranium concentration grid (ppm). The following point located data are available in this download: • Elevation. Height relative to the Australian Height Datum. Datum: GDA94 • Total Magnetic Intensity. Datum: GDA94 • Radiometrics. Datum: GDA94
-
<p>The Exploring for the Future (EFTF) initiative aims to reduce the technical risk of mineral exploration by providing pre-competitive data and information to support investment and mineral exploration in northern Australia – a key part of ensuring Australia's future economic prosperity. <p>To support the EFTF initiative, the presence of hydrothermal alteration systems associated with iron oxide copper-gold (IOCG) deposits were estimated throughout the Tennant Creek -– Mt Isa Project area of northern Australia. These zones are of economic interest due to their potential to host copper, gold, uranium and rare earth element mineralisation. <p>To predict the presence of IOCG-related alteration, gravity and magnetic intensity data were used to produce 3D models of density and magnetic susceptibility, respectively. The inversion models provide an indication of the volume and distribution of these physical properties within the subsurface and were used to define volumes with relatively high densities and high magnetic susceptibilities as proxies for magnetite-rich alteration and volumes with high density, but low magnetic susceptibility, as proxies for hematite-rich alteration. <p>Contact zones between these two sets of volumes are considered to be the most favourable areas for potential IOCG mineralisation. However, the inversion modelling inevitably will have mapped a number of ‘false positives’, which will require more detailed inversion modelling and/or other data sets to discriminate these from true IOCG-related alteration.
-
<div>This document defines the technical standards set by Geoscience Australia for the acquisition, processing and supply of airborne magnetic, horizontal magnetic gradient and radiometric (gamma-ray spectrometric) data. The technical standards cover the requirements for equipment, calibrations, quality control checks, reporting and data formats for airborne surveys.</div><div><br></div><div><br></div><div><strong>Table of Contents</strong></div><div><br></div><div>Attachment 1A – Data Acquisition and Processing</div><div><br></div><div>1 Aircraft</div><div>2 Flight and Tie Lines</div><div>3 Global Navigation Satellite System (GNSS)</div><div>4 Parallax Correction</div><div>5 Altimeter</div><div>6 Barometer</div><div>7 Digital Elevation Model</div><div>8 Magnetic System Equipment</div><div>9 Magnetic Gradient System Equipment</div><div>10 Magnetic / Gradient Calibration and Quality Tolerances</div><div>11 Magnetic Base Station (Diurnal Monitoring)</div><div>12 Magnetic Data Reduction</div><div>13 Magnetic Gradient Data Reduction</div><div>14 Radiometric System Equipment</div><div>15 Radiometric Calibration and Quality Tolerances</div><div>16 Radiometric Data Reduction</div><div><br></div><div>Attachment 1B – Reporting and Data Supply</div><div><br></div><div>1 General</div><div>2 Calibration Report</div><div>3 Daily Acquisition Report</div><div>4 Weekly Acquisition Report</div><div>5 Operations and Processing Summary Report</div><div>6 Supply Schedule</div><div><br></div><div>Attachment 1C – Data Formats</div><div><br></div><div>1 General</div><div>2 Point-Located Data Files</div><div>3 Definition Files</div><div>4 Description Files</div><div>5 Raw-Edited Magnetic Data File</div><div>6 Reduced Magnetic Data File</div><div>7 Diurnal Magnetic Data File</div><div>8 Raw-Edited Magnetic Gradient Data File</div><div>9 Reduced Magnetic Gradiometry Data File</div><div>10 Raw-Edited Radiometric Data File</div><div>11 Reduced Radiometric Data File</div><div>12 Gridded Data Files</div><div>13 Image Enhanced GeoTIFF Files
-
Over 8,200 line kilometres of gravity and magnetic data, acquired during the 2020 Otway Basin Seismic Program (OBSP), were combined with public domain survey and satellite data to produce seamless maps of the NW-SE trending deep-water Otway Basin. These data provide valuable information on the geometry and spatial extent of igneous rocks in the deep-water basin. While the top of basement can effectively be imaged from seismic reflection datasets onshore in the Otway Basin, it remains problematic in parts of the deep-water offshore region due to variable seismic data quality. Modelling of the magnetic line data provides an estimate of the depth to the top of basement, an important interface for understanding hydrocarbon prospectivity because it plays a key role in characterising the tectonic evolution of the basin, and thus the thermal maturation history of hydrocarbons. Magnetic modelling was performed using a profile-based curve matching technique producing a depth estimate to the top of the magnetic body that is assumed to be the top of the basement. However, this assumption is flawed where there are volcanic or igneous intra-sedimentary rocks in the basin, as is the case for the Otway Basin where the interpretation of seismic reflection data shows highly reflective events corresponding to igneous features. In most parts of the basin, the modelling results show two layers: a shallow layer (depths < 1000m) corresponding to near surface volcanics, and a deeper layer (depths > 1000m) attributed to the top of the magnetic basement. Magnetic basement shows some similarities with basement picked on seismic reflection data, though in some areas the magnetic basement is shallower. The results also show that the depth to basement is not well resolved in areas with abundant intra-sedimentary igneous rocks. Further investigation is needed in such areas. Presented at the 2024 Australian Society of Exploration Geophysicists (ASEG) Discover Symposium
-
<p>Geoscience Australia (GA) generated a series of gravity and magnetic grids and enhancements covering Northern Australia. Several derivative gravity datasets have been generated 1) for the North-West Shield Western Australia region (approximately between latitudes 7‒26⁰ S and longitudes 110‒130⁰ E), 2) for the Northern Territory (approximately between latitudes 7‒26⁰ S and longitudes 125.5‒141⁰ E) and for Queensland (approximately between latitudes 7‒30⁰ S and longitudes 135‒160⁰ E). The magnetic dataset has been generated only for the North-West Shield Western Australia region (approximately between latitudes 7‒26⁰ S and longitudes 110‒130⁰ E). The magnetic and gravity data were downloaded from the Geophysical Archive Data Delivery System (GADDS), website (http://www.geoscience.gov.au/cgi-bin/mapserv?map=/nas/web/ops/prod/apps/mapserver/gadds/wms_map/gadds.map&mode=browse). Satellite Free-air (FA) gravity v27.1 (released March 11, 2019) and Satellite Topography v19.1 (released January 14, 2019) data were sourced from Sandwell et al. (2014) and downloaded from the Scripps Institution of Oceanography (SIO), National Oceanic and Atmospheric Administration (NOAA), U.S. Navy and National Geospatial-Intelligence Agency (NGA) (SIO Satellite Geodesy, website, http://topex.ucsd.edu/WWW_html/mar_grav.html). The Satellite Bouguer gravity grid with onshore correction density of 2.67 gcm-3 and offshore correction density of 2.20 gcm-3 was derived from the Free-air gravity v27.1 and Topography data V19.1. This Bouguer gravity grid was used for filling areas of data gaps in the offshore region. <p>Data evaluation and processing of gravity and magnetic data available in the area of interest resulted in the production of stitched onshore-offshore Bouguer gravity grid derived from offshore satellite Bouguer gravity grid and GA’s onshore ground and airborne gravity survey data and a stitched Total Magnetic Intensity (TMI) grid derived from airborne and shipborne surveys (Tables 1 and 5). A Reduction to the Pole (RTP) grid was derived from the stitched TMI grid. The TMI, RTP, FA and terrain corrected Bouguer gravity anomalies are standard datasets for geological analysis. The free-air gravity anomaly provides the raw and basic gravity information. Images of free-air gravity are useful for first-pass interpretation and the data is used for gravity modelling. Magnetic anomalies provide information on numerous magnetic sources, including deep sources as arising from the structure and composition of magnetic basement and shallow sources such as intra-sedimentary magnetic units (e.g. volcanics, intrusions, and magnetic sedimentary layers). A standard TMI image will contain information from all these sources. Geosoft Oasis montaj software was used throughout the data processing and enhancement procedure and the montaj GridKnit module was used to generate the stitched gravity and magnetic grids. <p>Enhancement techniques have been applied to the final processed Bouguer gravity and RTP magnetic grids to highlight subtle features from various sources and to separate anomalies from different source depths. These enhancement techniques are described in the next section. <p>Enhancement processing techniques and results <p>A summary of image processing techniques used to achieve various outcomes is described in Table 1. <p>Data type Filter applied Enhancement/outcome <p>Gravity/Magnetic First vertical derivative (1VD) Near surface features (e.g. intrabasinal) <p>Gravity/Magnetic Upward continuation Noise reduction in data <p>Gravity/Magnetic Low pass filter, or large distance upward continuation Enhancement of deep features (e.g. basement) <p>Gravity/Magnetic High pass filter Enhancement of shallow features (e.g. surface anomalies) <p>Gravity/Magnetic Tilt filter and 1VD Enhancement of structure (e.g. in basement) <p>Gravity/Magnetic ZS-Edgezone and ZS-Edge filters Enhancement of edges <p>Gravity/Magnetic horizontal modulus / horizontal gradient Enhancement of boundaries <p>Magnetic RTP (reduction to the pole), Compound Anomaly, and Analytic Signal filter Accurate location of sources
-
Data accompanying the GA Record Regional geology and mineral systems of the Stavely region, western Victoria. Data release 6 - Pre-drilling geophysics. Prior to stratigraphic drilling, existing airborne magnetic data were analysed and new refraction seismic, reflection seismic and gravity data were acquired as part of a pre-drilling geophysical acquisition program. The aim of this geophysical program was to provide cover thickness estimates at the drill site locations prior to the drilling program commencing, in order to reduce the geological and financial risk. Passive seismic data were acquired post-drilling for benchmarking with the other methods against the completed drilling in order to assess a potential tool kit of geophysical methods for the explorer to predict reliably the cover thickness at the tenement scale. This is the first study where multiple geophysical methods are applied to the same site and where full drill core, downhole wireline logging and hyperspectral (HyLogger) data are freely available.