Environmental Science and Management
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
This dataset provides the spatially continuous data of seabed gravel (sediment fraction >2000 µm), mud (sediment fraction < 63 µm) and sand content (sediment fraction 63-2000 µm) expressed as a weight percentage ranging from 0 to 100%, presented in 0.0025 decimal degree (dd) resolution raster grids format and ascii text file. The dataset covers the Petrel sub-basin in the Australian continental EEZ. This dataset supersedes previous predictions of sediment gravel, mud and sand content for the basin with demonstrated improvements in accuracy. Accuracy of predictions varies based on density of underlying data and level of seabed complexity. Artefacts occur in this dataset as a result of insufficient samples in relevant regions. This dataset is intended for use at the basin scale. The dataset may not be appropriate for use at smaller scales in areas where sample density is insufficient to detect local variation in sediment properties. To obtain the most accurate interpretation of sediment distribution in these areas, it is recommended that additional samples be collected and interpolations updated.
-
This report provides background information about the Ginninderra controlled release Experiment 1 including a description of the environment and weather during the experiment, the groundwater conditions and a brief description of all the monitoring techniques that were trialled during the experiment. Release of CO2 began 28 March 2012 at 10:30 AM and stopped 30 May 2012 4:15 PM. The total CO2 release rate during Experiment 1 was 144 kg/d CO2. Krypton gas was also released as a tracer gas at a rate of 10 mL/min Kr in one section of the release well only. The aim of the Ginninderra Experiment 1 controlled release was to artificially simulate the leakage of CO2 along a line source, to represent leakage along a fault. Multiple methods and techniques were then trialled in order to assess their abilities to: - detect that a leak was present - pinpoint the location of the leak - identify the strength of the leak - monitor how the CO2 behaves in the sub-surface - assess the effects it may have on soil ecology Several monitoring and assessment techniques were trialled for their effectiveness to quantify and qualify the CO2 that was release. The methods are described in this report and include: - soil gas - CO2 carbo-cap (GMP343) - eddy covariance - groundwater levels and chemistry - soil microbial samples - soil flux - krypton in air - electromagnetic (EM-31) - meteorology - CO2 isotopes in tank This report is a reference guide to describe the Ginninderra Experiment 1 details. Only methods are described in this report with the results of the study published in conference papers and future journal articles.
-
This study explored the full potential of high-resolution multibeam data for an automatic and accurate mapping of complex seabed under a predictive modelling framework. Despite of the extremely complex distributions of various hard substrata at the inner-shelf of the study area, we achieved a nearly perfect prediction of 'hard vs soft' classification with an AUC close to 1.0. The predictions were also satisfactory for four out of five sediment properties, with R2 values range from 0.55 to 0.73. In general, this study demonstrated that both bathymetry and backscatter information (from the multibeam data) should be fully utilised to maximise the accuracy of seabed mapping. From the modelled relationships between sediment properties and multibeam data, we found that coarser sediment generally generates stronger backscatter return and that deeper water with its low energy favours the deposition of mud content. Sorting was also found to be a better sediment composite property than mean grain size. In addition, the results proved one again the advantages of applying proper feature extraction approaches over original backscatter angular response curves.
-
The Aerial Survey Photography Records consist of more than 11,000 film negatives as well as derivative contract prints and diapositives. These records of the Australian landscape were created by Geoscience Australia and its predecessor agencies such as the Australian Surveying and Land Information Group, the Australian Survey Office and the Division of National Mapping. The records were captured during the period c.1928-1993 and have been used as the basis for the Commonwealth government's topographic map production as well as providing an opportunity to track environmental changes in the landscape over an extensive period of time. Antarctic films are also included in the collection. The entire collection was transferred to National Archives Australia in December 2010.
-
In 2010, a network of Marine Protected Areas (MPAs) was proposed for the East Antarctic region. This proposal was based on the best available data, which for the benthic regime consisted chiefly of seabed geomorphology and satellite bathymetry data. Case studies from the East Antarctic region indicate that depth and morphology are important factors in delineating marine benthic communities, particularly on the continental shelf. However, parameters such as sediment composition also show a strong association with the distribution and diversity of benthic assemblages. A better assessment of the nature of benthic habitats within the proposed MPA network is now possible with the incorporation of a compilation of sediment properties and higher resolution bathymetry grids across the East Antarctic region (see Figures A and B). Based on these physical properties, and in combination with the seabed morphology, we can now distinguish a range of distinct habitats, such as deep muddy basins, scoured sandy shelf banks, ruggedly eroded slope canyons and muddy deep sea plains. In this presentation, we assess the types of benthic habitats across the East Antarctic region, and then determine how well the proposed MPA network represents the diversity of habitats across this margin. The diversity of physical environments within the proposed MPAs suggests that they likely support a diverse range of benthic communities which are broadly representative of the surrounding region.
-
Marine visual imaging has become a major assessment tool in the science, policy and public understanding of our seas and oceans. The technology to acquire and process this imagery has significantly evolved in recent years through the development of new camera platforms, camera types, lighting systems and analytical software. These advances have led to new challenges in imaging, including storage and management of `big data, manipulation of digital photos, and the extraction of biological and ecological data. The need to address these challenges, within and beyond the scientific community, is set to substantially increase in the near future, as imaging is increasingly used in the designation and evaluation of marine conservation areas, and for the assessment of environmental baselines and impact monitoring for maritime industry. We review the state of the theory, techniques and technologies associated with each of the steps of marine imaging for observation and research, and to provide an outlook on the future from this active scientific and engineering community that develops and uses it.
-
<b> Legacy service retired 29/11/2022</b> This is an Open Geospatial Consortium (OGC) web service providing access to Australian onshore and offshore borehole data conforming to the GeoSciML version 4.0 specification. The borehole data includes Mineral Drillholes, Petroleum Wells and Water Bores along with a variety of others types. The dataset has been restricted to onshore and offshore Australian boreholes, and bores that have the potential to support geological investigations and assessment of a variety of resources.
-
Presentation to be delivered at the Western Australian Marine Science Institution Symposium, Fremantle, 21 February Abstract text: Geoscience Australia, as the Australian Government's geoscience agency, has a long history of marine environment mapping and research on the North West Shelf of Australia. In recent times, several data acquisition surveys have been completed and subsequent interpretive products have been produced under Commonwealth Government programmes, including: the Offshore Energy Security Program (2006-2011); the Marine Biodiversity Hub under the Commonwealth Environmental Research Facilities (CERF) and the National Environmental Research Program (NERP), and; the National CO2 Infrastructure Plan (NCIP, 2011-15). Collaborations, such as those facilitated by CERF and NERP, and with the Australian Institute of Marine Science (AIMS), have resulted in further work in the region. Areas of investigation have included the North Perth Basin, Bonaparte Gulf and Timor Sea. Using data from these surveys and other sources, GA is continuing to develop regional-scale seabed datasets, including bathymetry, geomorphology, sediment properties, seabed disturbance and seabed hardness that are publicly available via the internet. A pilot program was started in 2010 to collate and archive environmental data generated by the offshore petroleum industry, with a focus on the North West Shelf. Geoscience Australia is currently undertaking marine surveys to provide seabed environmental information to support assessments of the CO2 storage potential of several offshore sedimentary basins under NCIP. A marine survey over the Browse Basin in May 2013, to be undertaken in collaboration with the AIMS, will acquire high-resolution bathymetry and information on seabed and shallow subsurface geology and ecology. Follow-up surveys are also proposed during 2013-2015. The Browse survey results will be publicly released as a data package integrating existing and the newly acquired seabed data, and in a report to the Department of Resources Energy and Tourism on the CO2 storage potential of selected areas of the Browse Basin.
-
The Protocol on Environmental Protection to the Antarctic Treaty (the 'Madrid Protocol') includes provisions to protect areas of biological, scientific, historic, aesthetic or wilderness value. While these provisions have been mostly utilised to protect sites of biological or cultural significance, sites of geological or geomorphological significance may also be considered. To date, only two sites within East Antarctica (Marine Plain, Vestfold Hills and Mount Harding, Grove Mountains), have been declared as Antarctic Specially Protected Areas (ASPA) in recognition of their unique geological or geomorphological significance. Recently, however, Stornes, a peninsula in the Larsemann Hills (Prydz Bay) has been identified as a candidate due to the abundance and diversity of extremely rare granulite-facies borosilicate and phosphate minerals found there. The need for proactive intervention, protection and management of sites of intrinsic geoscientific value is becoming increasingly important. This recent example highlights the growing awareness of the intrinsic scientific value of Antarctic geological features within the AAT, including rare mineral or fossil localities. This awareness is identified within the current Australian Antarctic Science Strategic Plan and emphasises that geosciences can actively contribute to and influence the development of management plans and actively support Australia's commitments to Annex V of the Madrid Protocol. Wider recognition of the geological values achieved by invoking the provisions for area management, including creating the need to obtain the permission of a national authority to enter the area, should also mitigate casual souveniring and accidental or deliberate damage caused by ill-advised construction or other human activity.
-
This web service contains marine geospatial data held by Geoscience Australia. It includes bathymetry and backscatter gridded data plus derived layers, bathymetry coverage information, bathmetry collection priority and planning areas, marine sediment data and other derived products. It also contains the 150 m and optimal resolution bathymetry, 5 m sidescan sonar (SSS) and synthetic aperture sonar (SAS) data collected during phase 1 and 2 marine surveys conducted by the Governments of Australia, Malaysia and the People's Republic of China for the search of Malaysian Airlines Flight MH370 in the Indian Ocean. This web service allows exploration of the seafloor topography through the compilation of multibeam sonar and other marine datasets acquired.