AusLAMP
Type of resources
Keywords
Publication year
Service types
Topics
-
AusLAMP is a collaborative national project to cover Australia with long-period magnetotelluric (MT) data in an approximately 55 km spaced array. Signatures from past tectonothermal events can be retained in the lithosphere for hundreds of millions of years when these events deposit conductive mineralogy that is imaged by MT as electrically conductive pathways. MT also images regions of different bulk conductivity and can help to understand the continuation of crustal domains down into the mantle, and address questions on the tectonic evolution of Australia. The AusLAMP data presented here were collected as part of three separate collaborative projects involving several organisations. Geoscience Australia (GA), the Geological Survey of South Australia, the Geological Survey of New South Wales, the Geological Survey of Victoria, and the University of Adelaide all contributed staff and/or funding to collection of AusLAMP data; GA and AuScope contributed instrumentation. The data cover the Paleo-Mesoproterozoic Curnamona Province, the Neoproterozoic Flinders Ranges, and the Cambrian Delamerian Orogen, encompassing eastern South Australia and western New South Wales and western Victoria. This project represents the first electrical resistivity model to image the entire Curnamona Province and most of the onshore extent of the Delamerian Orogen, crossing the geographical state borders between South Australia, New South Wales and Victoria.
-
Geoscience Australia (GA), in partnership with State (SA, NSW, VIC, QLD, WA and TAS) and Northern Territory Geological Surveys, has applied the magnetotelluric (MT) technique to image the resistivity structure of the Australian continent over the last decade. Data have been acquired at nearly 5000 stations across Australia through a national MT survey program and regional MT surveys. Most of the data are available at GA’s website. These data provided valuable information for multi-disciplinary interpretations that incorporate various datasets. This release package includes ArcGIS shape files and Excel files of MT station locations for the completed AusLAMP and regional surveys up to December 2017.
-
The NSW component of the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP), is a collaboration between Geoscience Australia and the Geological Survey of New South Wales which commenced in 2016. Long-period MT data have been recorded at a 55-km spacing in a rolling deployment which to date has completed 224 of a planned 320 sites in NSW. This article summarises the progress of the AusLAMP NSW program and highlights how it is contributing to our understanding of the tectonic architecture in NSW.
-
The Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) is a collaborative national survey that acquires long-period magnetotelluric (MT) data on a half-degree grid spacing across Australia. This national scale survey aims to map the electrical conductivity/resistivity structure in the crust and mantle beneath the Australian continent, which provides significant additional information about Australia’s geodynamic framework as well as valuable pre-competitive data for resource exploration. Geoscience Australia in collaboration with the Geological Survey of New South Wales (GSNSW) has completed AusLAMP data acquisition at 321 sites across the state of NSW. The data were acquired using LEMI-424 instruments and were processed using the Lemigraph software. The processed data in EDI format and report of field acquisition, data QA/QC, and data processing have been released in 2020 (https://pid.geoscience.gov.au/dataset/ga/132148). This data release contains acquired time series data at each site in two formats: 1. MTH5, a hierarchical data format. The open-source MTH5 Python package (https://github.com/kujaku11/mth5) was used to convert the recorded LEMI data into MTH5 format. 2. Text file (*.TXT). This is the original format recorded by the LEMI-424 data logger. We acknowledge the traditional landowners, private landholders and national park authorities within the survey region, without whose cooperation these data could not have been collected. <b>Data is available on request from clientservices@ga.gov.au - Quote eCat# 148544</b>
-
The Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) aims to collect long period magnetotelluric data on a half degree (~55 km) grid across the Australian continent. New datasets have been collected in Northern Australia, as part of Geoscience Australia’s Exploring for the Future (EFTF) program with in-kind contributions from the Northern Territory Geological Survey and the Geological Survey of Queensland. This web service depicts the location of the 155 sites which were used in this study.
-
The Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP): New South Wales (NSW) magnetotelluric survey is a collaborative project between the Geological Survey of New South Wales (GSNSW) and Geoscience Australia. Long period magnetotelluric data are being acquired at around 305 sites on a half degree grid spacing across the state of NSW. <u>Phase one</u> This record outlines the field acquisition, data QA/QC, and data processing methodologies relating to the 224 sites released in phase one. The data are released in EDI format containing impedance estimates and transfer functions for each processed site. <u>Phase two</u> A further 73 EDI format data are released as part of phase two. These data were collected and processed using the same methodology as described in the GA record released as part of phase one.
-
Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. As part of Exploring for the Future (EFTF) program with contributions from the Geological Survey of Queensland, long-period magnetotelluric (MT) data for the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) were collected using Geoscience Australia's LEMI-424 instruments on a half-degree grid across Queensland from April 2021 to November 2022. This survey aims to map the electrical resistivity structures in the region. These results provide additional information about the lithospheric architecture and geodynamic processes, as well as valuable precompetitive data for resource exploration in this region. This data release package includes processed MT data, a preferred 3D resistivity model projected to GDA94 MGA Zone 54 and associated information for this project. The processed MT data were stored in EDI format, which is the industry standard format defined by the Society of Exploration Geophysicists. The preferred 3D resistivity model was derived from previous EFTF AusLAMP data acquired from 2016-2019 and recently acquired AusLAMP data in Queensland. The model is in SGrid format and geo-referenced TIFF format.
-
<div>This document describes Geoscience Australia’s standard operating procedure for acquiring long-period magnetotelluric (MT) data using equipment supplied by LEMI LLC. It is current as at April 2024. Users should check periodically for updated versions.</div><div><br></div><div>The procedure is based on the use of the LEMI-424 magnetotelluric station, comprising:</div><div>· LEMI-424 data logger</div><div>· LEMI-039 3-component analog magnetometer and cable</div><div>· LEMI-701 electrodes</div><div>· GPS receiver</div><div>· electric-line interface box</div><div><br></div><div>Geoscience Australia supplements this equipment with the addition of:</div><div>· a Pelican equipment box to hold and transport the equipment</div><div>· an acrylic housing to protect the LEMI-039 magnetometer</div><div>· four 50 m electrode cables</div><div>· a brass earth stake and cable</div><div>· a 12 V battery</div><div>· a solar panel</div><div><br></div>
-
<div>The Geoscience Australia magnetotellurics (MT) program collaborates with state and territory geological surveys, universities, and AuScope to acquire audio- (AMT), broadband- (BBMT), and long-period-MT (LPMT) data to help understand the electrical conductivity structure of the Australian continent.</div><div><br></div><div>This report collates the time-series and processed data, electrical conductivity models, and publications released for projects for which Geoscience Australia was the lead organisation, a collaborator, or an in-kind or financial supporter. For the most part, this report does not reference MT data, models or publications released by other parties for projects in which Geoscience Australia had no involvement. Please see Geoscience Australia’s AusLAMP, Exploring for the Future AusLAMP, and Regional Magnetotellurics webpages for more information.</div>
-
<div><strong>Output Type: </strong>Exploring for the Future Extended Abstract</div><div><br></div><div><strong>Short Abstract:</strong> Under the Exploring for the Future (EFTF) program, Geoscience Australia staff and collaborators engaged with land-connected stakeholders that managed or had an interest in land comprising 56% of the total land mass area of Australia. From 2020 to 2023, staff planning ground-based and airborne geophysical and geological data acquisition projects consulted farmers, National Park rangers and managers, Native Title holders, cultural heritage custodians and other land-connected people to obtain land access and cultural heritage clearances for surveys proposed on over 122,000 parcels of land. Engagement did not always result in field activities proceeding. To support communication with this diverse audience, animations, comic-style factsheets, and physical models, were created to help explain field techniques. While the tools created have been useful, the most effective method of communication was found to be a combination of these tools and open two-way discussions.</div><div><br></div><div><strong>Citation: </strong>Sweeney, M., Kuoni, J., Iffland, D. & Soroka, L., 2024. Improving how we engage with land-connected people about geoscience. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts. Geoscience Australia, Canberra. https://doi.org/10.26186/148760</div>