U-Pb
Type of resources
Keywords
Publication year
Service types
Topics
-
This Record presents new zircon U-Pb geochronological data, obtained using a Sensitive High Resolution Ion MicroProbe (SHRIMP), and thin section descriptions for four samples of plutonic and sedimentary rocks from the Captains Flat 1:50, 000 special map sheet, Eastern Lachlan Orogen, New South Wales. The work was carried out under the auspices of the National Geoscience Accord, as a component of the collaborative Geochronology Project between the Geological Survey of New South Wales (GSNSW) and Geoscience Australia (GA) during the reporting periods 2012 and 2013. The four samples (Table 1.1 and Figure 1.1) were collected from CANBERRA (small and large capitals refer to map sheet names in the 1:100 000 and 1:250 000 Topographic Series respectively); one sample from CANBERRA (northcentral CANBERRA), two from MICHELAGO (southcentral CANBERRA) and one from ARALUEN (southcentral CANBERRA).
-
This Record presents new zircon U-Pb geochronological data, obtained using a Sensitive High Resolution Ion MicroProbe (SHRIMP) for thirty-five samples of plutonic rocks from the New England Orogen, New South Wales. The work was carried out under the auspices of the National Geoscience Accord, as a component of the collaborative Geochronology Project between the Geological Survey of New South Wales (GSNSW) and Geoscience Australia (GA) during the reporting periods 2012-2014.
-
The Hera Au–Pb–Zn–Ag deposit in the southeastern Cobar Basin of central New South Wales preserves calc-silicate veins/skarn and remnant carbonate/sandstone-hosted skarn within a reduced anchizonal Siluro-Devonian turbidite sequence. The skarn orebody distribution is controlled by a long-lived, basin margin fault system, that has intersected a sedimentary horizon dominated by siliciclastic turbidite, with lesser gritstone and thick sandstone intervals, and rare carbonate-bearing stratigraphy. Foliation (S1) envelopes the orebody and is crosscut by a series of late-stage east–west and north–south trending faults. Skarn at Hera displays mineralogical zonation along strike, from southern spessartine–grossular–biotite–actinolite-rich associations, to central diopside-rich–zoisite–actinolite/tremolite–grossular-bearing associations, through to the northern most tremolite–anorthite-rich (garnet-absent) association in remnant carbonate-rich lithologies and sandstone horizons; the northern lodes also display zonation down dip to garnet present associations at depth. High-T skarn assemblages are pervasively retrogressed to actinolite/tremolite–biotite-rich skarn and this retrograde phase is associated with the main pulse of sulfide mineralisation. The dominant sulfides are high-Fe-Mn sphalerite–galena–non-magnetic high-Fe pyrrhotite–chalcopyrite; pyrite, arsenopyrite and scheelite are locally abundant. The distribution of metals in part mimics the changing gangue mineralogy, with Au concentrated in the southern and lower northern lode systems and broadly inverse concentrations for Ag–Pb–Zn. Stable isotope data (O–H–S) from skarn amphiboles and associated sulfides are consistent with magmatic/basinal water and magmatic sulfur inputs, while hydrosilicates and sulfides from the wall rocks display elevated δD and mixed δ34S consistent with progressive mixing or dilution of original basinal/magmatic waters within the Hera deposit by unexchanged waters typical of low latitude (tropical) meteoritic waters. High precision titanite (U–Pb) and biotite (Ar–Ar) geochronology reveals a manifold orebody commencing with high-T skarn and retrograde Pb–Zn-rich skarn formation at ≥403 Ma, Au–low-Fe sphalerite mineralisation at 403.4 ± 1.1 Ma, foliation development remobilisation or new mineralisation at 390 ± 0.2 Ma followed by thrusting, orebody dismemberment at (384.8 ± 1.1 Ma) and remobilization or new mineralisation at 381.0 ± 2.2 Ma. The polymetallic nature of the Hera orebody is a result of multiple mineralizing events during extension and compression and involving both magmatic and likely basinal fluid/metal sources. <b>Citation:</b> Fitzherbert, Joel A., McKinnon, Adam R., Blevin, Phillip L., Waltenberg, Kathryn., Downes, Peter M., Wall, Corey., Matchan, Erin., Huang Huiqin., The Hera orebody: A complex distal (Au–Zn–Pb–Ag–Cu) skarn in the Cobar Basin of central New South Wales, Australia <i>Resource Geology,</i> Vol 71, Iss 4, pp296-319 <b>2021</b>. DOI: https://doi.org/10.1111/rge.12262
-
This Record presents new Sensitive High Resolution Ion Microprobe (SHRIMP) U–Pb geochronological results for samples collected from the Mount Isa Inlier and covered areas to the east. The Mary Kathleen Domain is the focus of this work and 11 metasedimentary and igneous samples were analysed from across the distribution of the domain. An additional two metasedimentary samples and one igneous sample from drill cores located east of the outcropping Mount Isa Province were also analysed. <b>Bibliographic Reference: </b>Kositcin, N., Purdy, D.J., Bultitude, R.J., Brown, D.D. & Hoy, D. Summary of Results. Joint GSQ–GA Geochronology Project: Mary Kathleen Domain and rocks under younger cover east of the Mount Isa Inlier, 2019–2020. <i>Queensland Geological Record</i><b> 2021/01</b>.
-
The late Permian Wandsworth Volcanic Group (WVG) in the southern New England Orogen (SNEO) is dominated by a monotonous series of amalgamated rhyodacitic to felsic eruptives, with minor interbedded flows, intrusives and sediments. The area enclosing known exposures of the WVG cover more than 30,000 km2, with a minimum thickness of 2 km. The top of the succession, as well as the vast majority of the pile representing non-welded material, has not been preserved. Field relationships indicate a broadly contemporaneous (though not necessarily genetic) relationship with late Permian granite magmatism, while Triassic plutons (typically in the range 246-243 Ma) intrude the WVG. SHRIMP U-Pb zircon dating indicates ages around 256.4 ± 1.6 Ma for basal units of the WVG, and 254.1 ± 2.2 Ma for the youngest preserved member of the WVG (Dundee Rhyodacite), defining a short period of substantial intermediate to acid eruptive volcanism. The compositionally unevolved Drake Volcanics to the northeast are older (264.4 ± 2.5 Ma) while those at Halls Peak are older still (Early Permian). Granites of the I-type Moonbi and Uralla Supersuites are dominantly 256-251 Ma and thus overlap in timing (and space) with the WVG event. Interestingly, many mineralized leucogranites (e.g. Parlour Mountain, Oban River, Gilgai) which were formerly regarded as Triassic are now established as synchronous with the Moonbi and Uralla Supersuites and the WVG. The age range of eruption of the WVG permitted by the SHRIMP results (~6 Ma) has been further constrained by CA-ID-TIMS U-Pb zircon analysis which yielded oldest and youngest ages of 255.54 ± 0.16 Ma and 253.26 ± 0.15 Ma respectively, indicating a maximum eruptive time range of ~2 Ma for the preserved pile. Our new results coincide with those determined from CA-ID-TIMS dating of tuffs in the Sydney and Gunnedah Basins. WVG exposures at Attunga are exactly (within ~0.1 Ma) coincident with the age of tuffs within the Trinkey Formation located in the Gunnedah Basin to the west, and the Dundee Rhyodacite is similarly closely matched to the thick Awaba Tuff in the Sydney Basin. Notably, much of the late Permian volcanic and plutonic magmatism in the SNEO is restricted to a remarkably small time range, which coincides exactly with the range of ash fall events in the Sydney and Gunnedah Basins, and possibly further afield. This suggests the SNEO, and the WVG in particular, was the dominant source of volcanic material erupted into these adjacent basins. Further, the adjacent basins may provide a more complete record of Permo-Triassic magmatism in the SNEO than currently preserved within the orogen itself.
-
This web service provides access to the Geoscience Australia (GA) ISOTOPE database containing compiled age and isotopic data from a range of published and unpublished (GA and non-GA) sources. The web service includes point layers (WFS, WMS, WMTS) with age and isotopic attribute information from the ISOTOPE database, and raster layers (WMS, WMTS, WCS) comprising the Isotopic Atlas grids which are interpolations of the point located age and isotope data in the ISOTOPE database.
-
<div>New Sensitive High Resolution Ion Microprobe (SHRIMP) U–Pb geochronological results for fifteen Proterozoic and late Paleozoic samples, thirteen from the Georgetown Region and two from the adjacent Cairns Region, are presented in this Record. Eleven of the samples are from cores of basement units intersected in drillholes that penetrated overlying rocks of the Karumba (Cenozoic) and Carpentaria (Mesozoic) basins. Three of these are gneisses from the undercover extension of the Yambo Subprovince (Etheridge Province) in the northeastern part of the Georgetown Region, four are of Mesoproterozoic granites from the Forsayth Subprovince (Etheridge Province) and Croydon Province farther south, and the remaining eight are from units forming part of the Carboniferous–Permian Kennedy Igneous Association, including two from surface outcrops in the Georgetown Region and two from surface outcrops in the adjacent Cairns Region.</div><div><br></div>
-
This Record presents new U-Pb geochronological data, obtained via Sensitive High Resolution Ion Micro Probe (SHRIMP), from six samples of igneous rocks and four samples of sedimentary rocks, collected from south-central New South Wales. The work is part of an ongoing Geochronology Project, conducted by the Geological Survey of New South Wales (GSNSW) and Geoscience Australia (GA) under a National Collaborative Framework (NCF) agreement, to better understand the geological evolution of the central Lachlan Orogen in the East Riverina region. The results presented herein correspond to the reporting period July 2015-June 2016.
-
This study assesses the effect of chemical abrasion on in-situ mass spectrometric isotopic and elemental analyses in zircon. Chemical abrasion improves the U-Pb systematics of SIMS (Secondary Ion Mass Spectrometry) analyses of reference zircons, while leaving other isotopic systems largely unchanged. SIMS <sup>206</sup>Pb/<sup>238</sup>U ages of chemically abraded reference materials TEMORA-2, 91500, QGNG, and OG1 are precise to within 0.25 to 0.4%, and are within uncertainty of chemically abraded TIMS reference ages, while SIMS <sup>206</sup>Pb/<sup>238</sup>U ages of untreated zircons are within uncertainty of TIMS reference ages where chemical abrasion was not used. Chemically abraded and untreated zircons appear to cross-calibrate within uncertainty using all but one possible permutations of reference materials, provided that the corresponding chemically abraded or untreated reference age is used for the appropriate material. In the case of reference zircons QGNG and OG1, which are slightly discordant, the SIMS U-Pb ages of chemically abraded and untreated material differ beyond their respective 95% confidence intervals. SIMS U-Pb analysis of chemically abraded zircon with multiple growth stages are more difficult to interpret. Treated igneous rims on zircon crystals from the S-type Mount Painter Volcanics are much lower in common Pb than the rims on untreated zircon grains. However, the analyses of chemically abraded material show excess scatter. Chemical abrasion also changes the relative abundance of the ages of zircon cores inherited from the sedimentary protolith, presumably due to some populations being more likely to survive the chemical abrasion process than others. We consider these results from inherited S-type zircon cores to be indicative of results for detrital zircon grains from unmelted sediments. Trace element, δ<sup>18</sup>O, and εHf analyses were also performed on these zircons. None of these systems showed substantial changes as a result of chemical abrasion. The most discordant reference material, OG1, showed a loss of OH as a result of chemical abrasion, presumably due to dissolution of hydrous metamict domains, or thermal dehydration during the annealing step of chemical abrasion. In no case did zircon gain fluorine due to exchange of lattice-bound substituted OH or other anions with fluorine during the HF partial dissolution phase of the chemical abrasion process. As the OG1, QGNG, and TEMORA-2 zircon samples are known to be compositionally inhomogenous in trace element composition, spot-to-spot differences dominated the trace element results. Even the 91500 megacrystic zircon pieces exhibited substantial chip-to-chip variation. The LREE in chemically abraded OG1 and TEMORA-2 were lower than in the untreated samples. Ti concentration and phosphorus saturation ((Y+REE)/P) were generally unchanged in all samples. <b>Citation:</b> Kooymans, C., Magee Jr., C. W., Waltenberg, K., Evans, N. J., Bodorkos, S., Amelin, Y., Kamo, S. L., and Ireland, T.: Effect of chemical abrasion of zircon on SIMS U–Pb, δ<sup>18</sup>O, trace element, and LA-ICPMS trace element and Lu–Hf isotopic analyses, Geochronology, 6, 337–363, https://doi.org/10.5194/gchron-6-337-2024, 2024.
-
The South Nicholson Basin sits between the Mount Isa Province to the east and southern McArthur Basin to the northwest. The McArthur Basin and Mount Isa Province are well studied and highly prospective for both mineral and energy resources. In contrast, the South Nicholson region is mostly undercover, little studied and consequently relatively poorly understood. A comprehensive U–Pb SHRIMP zircon and xenotime geochronology program was undertaken to better understand the stratigraphy of the South Nicholson region and its relationship to the more overtly prospective adjacent Mount Isa Province and McArthur Basin. The age data indicate South Nicholson Basin deposition commenced ca 1483 Ma, with cessation at least by ca 1266 Ma. The latter age, based on U–Pb xenotime, is currently interpreted as the timing of post-diagenetic regional fluid flow. The geochronology presented here provides the first direct age data confirming the South Nicholson Group is broadly contemporaneous with the Roper Group of the McArthur Basin. Some rocks, mapped previously as Mesoproterozoic South Nicholson Group and comprised of proximal, immature lithofacies, have detrital spectra consistent with that of the late Paleoproterozoic McNamara Group of the western Mount Isa Province which necessitates a revision of existing regional stratigraphic relationships. The stratigraphic revisions and correlations proposed here significantly expands the extent of highly prospective late Paleoproterozoic stratigraphy across the South Nicholson region and possibly, further west beneath the Georgina Basin. The data and conclusions presented here allow for improved regional stratigraphic correlations between Proterozoic basins, improved commodity prospectivity and targeted exploration strategies across central northern Australia. Presented at the 2020 Annual Geoscience Exploration Seminar (AGES)