From 1 - 10 / 25
  • Newer version v1.1 available at eCat <a href="https://pid.geoscience.gov.au/dataset/ga/147720">147720</a> Isotopic data from rocks and minerals have the potential to yield unique insights into the composition and evolution of the Earth's crust and mantle. Time-integrated records of crust and mantle differentiation (as preserved by the U-Pb, Sm-Nd and Lu-Hf isotopic systems, for example) are important in a wide range of geological applications, especially when successfully integrated with other geological, geophysical, and geochemical datasets. However, such integration requires (i) compilation of comprehensive isotopic data coverages, (ii) unification of datasets in a consistent structure to facilitate inter-comparison, and (iii) easy public accessibility of the compiled and unified datasets in spatial and tabular formats useful and useable by a broad range of industry, government and academic users. This constitutes a considerable challenge, because although a wealth of isotopic information has been collected from the Australian continent over the last 40 years, the published record is fragmentary, and derived from numerous and disparate sources. Unlocking and harnessing the collective value of isotopic datasets will enable more comprehensive and powerful interpretations, and significantly broaden their applicability to Earth evolution studies and mineral exploration. As part of the Exploring for the Future (EFTF) program (https://www.ga.gov.au/eftf), we have designed a new database structure and web service system to store and deliver full Lu-Hf isotope and associated O-isotope datasets, spanning new data collected during research programs conducted by Geoscience Australia (GA), as well as compiled literature data. Our approach emphasises the links between isotopic measurements and their spatial, geological, and data provenance information in order to support the widest possible range of uses. In particular, we build and store comprehensive links to the original sources of isotopic data so that (i) users can easily track down additional context and interpretation of datasets, and (ii) generators of isotopic data are appropriately acknowledged for their contributions. This system delivers complete datasets including (i) full analytical and derived data as published by the original author, (ii) additional, normalised derived data recalculated specifically to maximise inter-comparability of data from disparate sources, (iii) metadata related to the analytical setup, (iv) a broad range of sample information including sampling location, rock type, geological province and stratigraphic unit information, and (v) descriptions of (and links to) source publications. The data is delivered through the Geoscience Australia web portal (www.portal.ga.gov.au), and can also be accessed through any web portal capable of consuming Open Geospatial Consortium (OGC)-compliant web services, or any GIS system capable of consuming Web Map Services (WMS) or Web Feature Services (WFS). This Record describes the database system and web service tables. It also contains full tabulated datasets for data compiled from the North Australian Craton as part of the EFTF program. These data are predominantly micro-analytical zircon analyses which are linked at the spot-level across Lu-Hf, O, and U-Pb measurements. This data release comprises 5974 individual analyses from 149 unique rock samples.

  • Northern Australia Infrastructure Facility (NAIF) is a development financier to infrastructure projects in the Northern Territory, Queensland, Western Australia and the Australian Indian Ocean Territories. NAIF’s mission is to be an innovative financing partner in the growth of northern Australia. A key focus of any financing is to drive public benefit, economic, population growth, and Indigenous involvement in northern Australia. This NAIF dataset contains the limit and extent of Northern Australia as defined in the Northern Australia Infrastructure Facility Act 2016 including the Northern Australia Infrastructure Facility Amendment (Extension and Other Measures) Bill 2021 and the Northern Australia Infrastructure Facility Amendment (Miscellaneous Measures) Bill 2023. This is a maintained dataset and is kept updated to reflect any amendments to the legislation. The definition in the Northern Australia Infrastructure Facility Act 2016 states that Northern Australia means the area that includes the following: </div><div>&nbsp; (a)&nbsp;&nbsp;&nbsp;the Northern Territory; </div><div>&nbsp; (b)&nbsp;&nbsp;&nbsp;the areas of Queensland and Western Australia that are North of the Tropic of Capricorn </div><div>&nbsp; &nbsp;&nbsp;&nbsp;other than the Meekatharra Statistical Area level 2; </div><div>&nbsp; (c)&nbsp;&nbsp;&nbsp;the areas South of the Tropic of Capricorn of each Statistical Area level 2 that has an area </div><div>&nbsp; &nbsp; &nbsp;&nbsp;&nbsp;covered by paragraph&nbsp;(b); </div><div>&nbsp; (d)&nbsp;&nbsp;&nbsp;the following Statistical Areas level 2:&nbsp; </div><div>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(i)&nbsp;Gladstone; </div><div>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; (ii)&nbsp;Gladstone Hinterland; </div><div>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;(iii)&nbsp;Carnarvon;</div><div>(da)&nbsp;&nbsp;&nbsp;the Territory of Christmas Island; </div><div>(db)&nbsp;&nbsp;&nbsp;the Territory of Cocos (Keeling) Islands; </div><div>&nbsp; (e)&nbsp;&nbsp;&nbsp;&nbsp;the Local Government Areas of Meekatharra and Wiluna (despite paragraph&nbsp;(b)); </div><div>(ea)&nbsp;&nbsp;&nbsp;&nbsp;the Local Government Area of Ngaanyatjarraku; </div><div>&nbsp; (f)&nbsp;&nbsp;&nbsp;&nbsp;the territorial sea adjacent to areas covered by paragraphs&nbsp;(a) to (db).</div><div><br></div><div><br></div><div><br></div>

  • <p>Australia has a significant number of surface sediment geochemical surveys that have been undertaken by industry and government during the past 50 years. These surveys represent a vast investment, but up to now have been used in isolation from one another. The key to maximising the full potential of these data and the information they provide for mineral exploration, environmental management and agricultural purposes is using all surveys together, seamlessly. These geochemical surveys have not only sampled various landscape elements but have used multiple analytical techniques, instrumentation and laboratories. The geochemical data from these surveys need to be levelled to eliminate, as much as possible, non-geological variation. Using a variety of methodologies, including reanalysis of both international standards and small subsets of samples from previous surveys, we have created a seamless surface geochemical map for northern Australia, from nine surveys with 15605 samples. We tested our approach using two surveys from the southern Thomson Orogen, which removed interlaboratory and other analytical variation. Creation of the new combined and levelled northern Australian dataset paves the way for the application of statistical techniques, such as principal component analysis and machine learning, which maximise the value of these legacy data holdings. The methodology documented here can be applied to additional geochemical datasets that become available. <p><b>Citation:</b> Main, P. T. and Champion, D. C., 2020. Geochemistry of the North Australian Craton: piecing it together. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • This dataset contains the limit and extent of Northern Australia as defined by Northern Australia Infrastructure Facility Act 2016 (https://www.legislation.gov.au/Details/C2016A00041).

  • This dataset contains the limit and extent of Northern Australia as defined by the Northern Australia Infrastructure Facility Act 2016 (https://www.legislation.gov.au/Details/C2021C00228) and Northern Australia Infrastructure Facility Amendment (Extension and Other Measures) Act 2021 (https://www.aph.gov.au/Parliamentary_Business/Bills_Legislation/bd/bd2021a/21bd062).

  • With the increasing need to extend mineral exploration undercover, new approaches are required to better constrain concealed geology, thereby reducing exploration risk and search space. Hydrogeochemistry is an under-utilised tool that can identify subsurface geology and buried mineral system components, while also providing valuable insights into environmental baselines, energy systems and groundwater resources. With this aim, 238 water bores spanning seven geological provinces in the Northern Territory and Queensland were sampled and analysed for major cations and anions, trace elements, stable and radiogenic isotopes, organic species, and dissolved gases. Here, we demonstrate the utility of this dataset for identifying carbonate-rich aquifers and mineral system components therein. First, we use trends in major element ratios (Ca+Mg)/Cl– and SiO2/HCO–3, then strontium isotope ratios (87Sr/86Sr), to define subpopulations that reflect both spatial and compositional differences. We then apply mafic-to-felsic trace element ratios (V/Cs and Cu/Rb) to reveal elevated base metal concentrations near Lake Woods caused by water–rock interaction with dolerite intrusions. Correlated Sr concentrations between groundwater and surface sediments suggest that the geochemical evolution of these mediums in carbonate-dominated terrains is coupled. Our work develops an approach to guide mineral exploration undercover via the characterisation and differentiation of groundwaters from different aquifers, resulting in improved identification of geochemical anomalies. <b>Citation:</b> Schroder, I., de Caritat, P. and Wallace, L., 2020. The Northern Australia Hydrogeochemical Survey: aquifer lithologies, local backgrounds and undercover processes. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • <div>This dataset contains the limit and extent of Northern Australia as defined by the <a href="https://www.legislation.gov.au/Details/C2023C00186">Northern Australia Infrastructure Facility Act 2016</a> including the <a href="https://www.aph.gov.au/Parliamentary_Business/Bills_Legislation/bd/bd2021a/21bd062">Northern Australia Infrastructure Facility Amendment (Extension and Other Measures) Bill 2021</a> and the <a href="https://www.aph.gov.au/Parliamentary_Business/Committees/Senate/Rural_and_Regional_Affairs_and_Transport/NAInfrastructure/Report">Northern Australia Infrastructure Facility Amendment (Miscellaneous Measures) Bill 2023</a>.</div>

  • The AusAEM1 survey is the world’s largest airborne electromagnetic survey flown to date, extending across an area exceeding 1.1 million km2 over Queensland and the Northern Territory. Approximately 60 000 line kilometres of data were acquired at a nominal line spacing of 20 km. Using this dataset, we interpreted the depth to chronostratigraphic surfaces, assembled stratigraphic relationship information, and delineated structural and electrically conductive features. Our results improved understanding of upper-crustal geology, led to 3D mapping of palaeovalleys, prompted further investigation of electrical conductors and their relationship to structural features and mineralisation, and helped us continuously connect correlative outcropping units separated by up to hundreds of kilometres. Our interpretation is designed to improve targeting and outcomes for mineral, energy and groundwater exploration, and contributes to our understanding of the chronostratigraphic, structural and upper-crustal evolution of northern Australia. More than 150 000 regional depth measurements, each attributed with detailed geological information, are an important step towards a national geological framework, and offer a regional context for more detailed, smaller-scale AEM surveys. <b>Citation:</b> Wong, S.C.T., Roach, I.C., Nicoll, M.G., English, P.M., Bonnardot, M.-A., Brodie, R.C., Rollet, N. and Ley-Cooper, A.Y., 2020. Interpretation of the AusAEM1: insights from the world’s largest airborne electromagnetic survey. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • <div>Long-period magnetotelluric (MT) data from the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP), collected as part of Geoscience Australia’s Exploring for the Future program with contributions from the Northern Territory Geological Survey and the Geological Survey of Queensland, provide important first-order information for resolving large-scale lithospheric architecture and identifying the broad footprint of mineral systems in northern Australia. Large-scale crust/mantle conductivity anomalies map pathways of palaeo-fluid migration which is an important element of several mineral systems. For example, the Carpentaria conductivity anomaly east of Mount Isa and the Croydon, Georgetown to Greenvale conductivity anomaly are highly conductive lithospheric-scale structures, and show spatial correlations with major suture zones and known mineral deposits. These results provide evidence that some mineralisation occurs at the gradient of or over highly conductive structures at lower crustal and lithospheric mantle depths, which may represent fertile source regions for mineral systems. These observations provide a powerful means of highlighting prospective greenfield areas for mineral exploration in under-explored and covered regions.</div><div><br></div><div>Higher resolution scale-reduction MT surveys refine the geometry of some conductive anomalies from AusLAMP data, and investigate whether these deep conductivity anomalies link to the near surface. These links may act as conduits for crustal/mantle scale fluid migration to the upper crust, where they could form mineral deposits. For example, data reveals a favourable crustal architecture linking the deep conductivity anomaly or fertile source regions to the upper crust in the Cloncurry region. In addition, high-frequency MT data help to characterise cover and assist with selecting targets for drilling and improve the understanding of basement geology.</div><div><br></div><div>These results demonstrate that integration of multi-scale MT surveys is an effective approach for mapping lithospheric-scale features and selecting prospective areas for mineral exploration in covered terranes with limited geological knowledge.</div><div><br></div><div>Some models in this presentation were produced on the National Computational Infrastructure, which is supported by the Australian government. Abstract presented to the Australian Institute of Geoscientists – ALS Friday Seminar Series: Geophysical and Geochemical Signatures of Queensland Mineral Deposits October 2023 (https://www.aig.org.au/events/aig-als-friday-seminar-series-geophysical-and-geochemical-signatures-of-qld-mineral-deposits/)

  • <div>Alluvial sediments have long been used in geochemical surveys as their compositions are assumed to be representative of areas upstream. Overbank and floodplain sediments, in particular, are increasingly used for regional to continental-scale geochemical mapping. However, during downstream transport, sediments from heterogeneous source regions are carried away from their source regions and mixed. Consequently, using alluvial sedimentary geochemical data to generate continuous geochemical maps remains challenging. In this study we demonstrate a technique that numerically unmixes alluvial sediments to make a geochemical map of their upstream catchments. The unmixing approach uses a model that predicts the concentration of elements in downstream sediments, given a map of the drainage network and element concentrations in the source region. To unmix sedimentary chemistry, we seek the upstream geochemical map that, when mixed downstream, best fits geochemical observations downstream. To prevent overfitting we penalise the roughness of the geochemical model. To demonstrate our approach we apply it to alluvial samples gathered as part of the Northern Australia Geochemical Survey. This survey gathered samples collected over a ∼ 500,000 km2 area in northern Australia. We first validate our approach for this sample distribution with synthetic tests, which indicate that we can resolve geochemical variability at scales greater than 0.5 – 1◦ in size. We proceed to invert real geochemical data from the total digestion of fine-grained fraction of alluvial sediments. The resulting geochemical maps for two elements of potential economic interest, Cu and Nd, are evaluated in detail. We find that in both cases, our predicted downstream concentrations match well against a held-out, unseen subset of the data, as well as against data from an independent geochemical survey. By performing principal component analysis on maps generated for all 46 available elements we produce a synthesis map showing the significant geochemical domains of this part of northern Australia. This map shows strong spatial similarities to the underlying lithological map of the area. Finally, we compare the results from our approach to a geochemical map produced by kriging. We find that, unlike the method presented here, kriging generates geochemical maps that are both dampened relative to expected magnitude, as well as being spatially distorted. We argue that the unmixing approach is the most appropriate method for generating geochemical maps from regional-scale alluvial surveys.&nbsp;</div> <b>Citation:</b> Alex G. Lipp, Patrice de Caritat, Gareth G. Roberts, Geochemical mapping by unmixing alluvial sediments: An example from northern Australia, <i>Journal of Geochemical Exploration,</i> Volume 248, <b>2023</b>, 107174, ISSN 0375-6742, https://doi.org/10.1016/j.gexplo.2023.107174. (https://www.sciencedirect.com/science/article/pii/S0375674223000213)