CO2 capture
Type of resources
Keywords
Publication year
Scale
Topics
-
The Petrel Sub-basin Marine Survey GA-0335 (SOL5463) was acquired by the RV Solander during May 2012 as part of the Commonwealth Government's National Low Emission Coal Initiative (NLECI). The survey was undertaken as a collaboration between the Australian Institute of Marine Science (AIMS) and GA. The purpose was to acquire geophysical and biophysical data on shallow (less then 100m water depth) seabed environments within two targeted areas in the Petrel Sub-basin to support investigation for CO2 storage potential in these areas. Underwater video footage and still photographic images (12 megapixel resolution) from towed-video were acquired from 11 stations. The quality of imagery varies among transects and some still images were not of suitable quality for analysis. No still images are available for stations 2, 4 and 7 due to system malfunction. Video and still image files and associated parent folders are named by station number, gear code (CAM = underwater camera system) and then the deployment number. For example 'STN08CAM06' would represent a video transect from Station 08 that was the 6th video transect of the survey. Please note that the Ultra-short Baseline (USBL) acoustic tracking system used to track the towed-camera system failed early in the survey; hence geo-location of video transects and stills could only be linked to the R.V. Solander's ship navigation.
-
Residual CO2 saturation (Sgr-CO2) is considered one of the most important trapping mechanisms for geological CO2 storage. Yet, standard procedures for the determination of Sgr-CO2 are missing and Sgr-CO2 has not been determined quantitatively at reservoir until recently. This circumstance introduces uncertainty in the prediction of the nature and capacity of CO2 storage and requires the development of well test procedures. The CO2CRC drilled a dedicated well with perforations in a low salinity aquifer of the Paaratte Formation between 1440 - 1447 m below the surface of the Otway Basin, Australia, with the aim to develop and compare five methods to determine Sgr-CO2 (see also Paterson et al, this volume).
-
This is a 3 minute movie (with production music), to be played in the background during the October 28th 2010 Geoscience Australia Parlimentary Breakfast. The video shows a wide range of the types of activities that GA is involved in. These images include GA people doing GA activities as well as some of the results of offshore surveys; continental mapping; eath monitoring etc. The movie will be played as a background before and after GA's CEO (Chris Pigram) presentation.
-
There remains considerable uncertainty regarding the location, timing and availability of CO2 storage sites in both southeast Queensland and New South Wales. In New South Wales, the main issues relate to the lack of recent or reliable valid geological information that would permit a complete and comprehensive evaluation. Some sedimentary basins appear to contain potential storage reservoirs although they have low permeabilities, and are therefore likely to have low injection rates. In southeast Queensland, recent work has indicated that in some parts of the Bowen and Surat basins CO2 storage is likely to compete with other resources such as groundwater and hydrocarbons. However, current research on the potential storage in deeper saline formations in the southern and western Bowen Basin has provided encouraging results. Storage in deeper stratigraphic units in the central western part of the basin will rely on injection in low permeability formations, and more correlation work is required to define generally narrow storage targets. The Wunger Ridge, in the southern Bowen Basin, however, has promise with both significant storage potential and relatively low geological risk. One area in which there is some potential in both New South Wales and southeast Queensland is CO2 storage in coal seams, as close technical and economic relationships exist between coal bed methane (CBM) field development and operations and CO2 storage. Substantial collaborative research is still required in this area and is currently a focus of the CO2CRC activities
-
Initial 2D seismic survey using mini-vibroseis with high frequency band 10 - 150Hz. This seismic survey is part of the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) projects.
-
The greater Eromanga Basin is an intracratonic Mesozoic basin covering an area approximately 2,000,000 km2 in central and eastern Australia. The greater Eromanga Basin encompasses three correlated basins: the Eromanga Basin (central and western regions), Surat Basin (eastern region) and the Carpentaria Basin (northern region). The greater Eromanga Basin hosts Australia's largest known reserves of groundwater and onshore hydrocarbons and also contains extensive geothermal and uranium systems. The basin has also demonstrated potential as a greenhouse gas sequestration site and will likely play an intrinsic role in securing Australia's energy future. A 3D geological map has been constructed for the greater Eromanga Basin using publicly available datasets. These are principally compiled drilling datasets (i.e. water bores; mineral and petroleum exploration wells) and 1:1,000,000 scale surface geology map of Australia. Geophysical wireline logs, hydrochemistry and radiometrics datasets were also integrated into the 3D geological map
-
The Petrel Sub-basin Marine Environmental Survey GA-0335, (SOL5463) was undertaken by the RV Solander during May 2012 as part of the Commonwealth Government's National Low Emission Coal Initiative (NLECI). The survey was undertaken as a collaboration between the Australian Institute of Marine Science (AIMS) and GA. The purpose was to acquire geophysical and biophysical data on shallow (less then 100m water depth) seabed environments within two targeted areas in the Petrel Sub-basin to support investigation for CO2 storage potential in these areas. This dataset has analysis of Chlorin and geochemmistry for samples taken on survey.
-
The Petrel Sub-basin Marine Environmental Survey GA-0335, (SOL5463) was undertaken using the RV Solander during May 2012 as part of the Commonwealth Government's National Low Emission Coal Initiative (NLECI). The survey was undertaken as a collaboration between the Australian Institute of Marine Science (AIMS) and GA. The purpose was to acquire geophysical and biophysical data on shallow (less then 100m water depth) seabed environments within two targeted areas in the Petrel Sub-basin to support investigation for CO2 storage potential in these areas. This 10 sample data-set comprises sediment oxygen demand data (expressed as % saturation per gram dry weight) from surface seabed sediments (~0-2 cm) in the Timor Sea.
-
We present a probabilistic tectonic hazard analysis of a site in the Otway Basin,Victoria, Australia, as part of the CO2CRC Otway Project for CO2 storage risk. The study involves estimating the likelihood of future strong earthquake shaking and associated fault displacements from natural tectonic processes that could adversely impact the storage process at the site. Three datasets are used to quantify the tectonic hazards at the site: (1) active faults; (2) historical seismicity, and; (3) GPS surface velocities. Our analysis of GPS data reveals strain rates at the limit of detectability and not significantly different from zero. Consequently, we do not develop a GPS-based source model for this Otway Basin model. We construct logic trees to capture epistemic uncertainty in both the fault and seismicity source parameters, and in the ground motion prediction. A new feature for seismic hazard modelling in Australia, and rarely dealt with in low-seismicity regions elsewhere, is the treatment of fault episodicity (long-term activity versus inactivity) in the Otway model. Seismic hazard curves for the combined (fault and distributed seismicity) source model show that hazard is generally low, with peak ground acceleration estimates of less than 0.1g at annual probabilities of 10-3-10-4/yr. The annual probability for tectonic displacements of greater than or equal to 1m at the site is even lower, in the vicinity of 10-8-10-9/yr. The low hazard is consistent with the intraplate tectonic setting of the region, and unlikely to pose a significant hazard for CO2 containment and infrastructure.
-
The CO2CRC Otway Project in southwestern Victoria is the Australian flagship for geological storage of CO2. Phase 1 of the project involved the injection of a CO2-rich supercritical fluid into a depleted natural gas field at a depth of ~2 km. The project reached a major milestone late last year with the cessation of injection and the emplacement of around 65,000 tonnes of the supercritical fluid. Phase 2 of the project is set to commence in early 2011 with the injection a few 100 tonnes of pure CO2 into a saline aquifer at ~1.5 km depth. Critical to the project was the drilling of the CRC-1 and CRC-2 wells, with both being used as injection wells. During drilling of each well, fluorescein dye was added to the drilling mud with the intention to maintain a concentration of 5 ppm w/v. The role of fluorescein was to 1) quantitated the degree of drilling fluid contamination that may accompany autochonthous formation waters recovered with the multiple dynamic testing (MDT) tool, and 2) provide a measure of the depth of drilling mud penetration into the recovered cores in order to provide pristine material for microbiological studies.