From 1 - 10 / 34
  • Paleoproterozoic-earliest Mesoproterozoic sequences in the Mount Isa region of northern Australia preserve a 200 Myr record (1800-1600 Ma) of intracontinental rifting, culminating in crustal thinning, elevated heat flow and establishment of a North American Basin and Range-style crustal architecture in which basin evolution was linked at depth to bimodal magmatism, high temperature-low pressure metamorphism and the formation of extensional shear zones. This geological evolution and record is amenable to investigation through a combination of mine visits and outcrop geology, and is the principal purpose of this field guide. Rifting initiated in crystalline basement -1840 Ma old and produced three stacked sedimentary basins (1800-1750 Ma Leichhardt, 1730-1670 Ma Calvert and 1670-1575 Ma Isa superbasins) separated by major unconformities and in which depositional conditions progressively changed from fluviatile-lacustrine to fully marine. By 1685 Ma, a deep marine, turbidite-dominated basin existed in the east and basaltic magmas had evolved in composition from continental to oceanic tholeiites as the crust became increasingly thinned and attenuated. Except for an episode of minor deformation and basin inversion at c. 1640 Ma, sedimentation continued across the region until onset of the Isan Orogeny at 1600 Ma.

  • Crustal structure associated with the northern Perth Basin is largely unknown. To help address this uncertainty, we constructed 3D gravity models. We adopt an approach whereby 'flawed' models are used to provide insight into basin thickness and crustal structure by highlighting areas where computed gravity does not fit measured gravity anomalies. The initial flawed models incorporate no arbitrary adjustments to geometry or density. In these models, two different Moho geometries are used, one based on Airy isostasy, the other incorporating an independently-computed Moho model for the Australian region. The resulting flawed models show that the crust of the northern Perth Basin is not in Airy isostatic equilibrium. A reasonable fit to long-wavelength observed gravity data is achieved for a model incorporating the Australia-wide Moho model. The deep Moho beneath the onshore Dandaragan Trough is interpreted to be the result of crustal-scale block rotation on the Darling Fault about a pivot point close to the Beagle Ridge. Flawed model results in the outboard Zeewyck Sub-basin suggest that the thickness of low-density sediment interpreted from seismic reflection data is underestimated. However, by making minimal adjustments to the model geometry, the gravity field over the Zeewyck Sub-basin can be explained by a deep and steep-sided depocentre associated with large variations in Moho depth over short distances. This geometry is suggestive of a transtensional formation mechanism. The flawed models do not explain the gravity field over the Turtle Dove Ridge, where computed gravity is less than observed. The results of our modelling highlight the benefits of considering 'flawed' gravity models that do not necessarily generate a good fit between observed and calculated gravity anomalies. These models help to more clearly identify areas with insufficient constraints and also provide impetus for re-assessing the interpretation of seismic reflection data.

  • Interpretation of gravity and magnetic data in the vicinity of the deep seismic lines 10GA-CP1, 10GA-CP2 and 10GA-CP3, which cross the Capricorn Orogen of Western Australia. Interpretation techniques untaken include multiscale edge detection (worms), 2.5D forward modelling and unconstrained 3D inversion.

  • The Onshore Energy Security Program was funded by the Australian Government from 2006 to 2011 to reduce risk in energy exploration. The program was delivered by Geoscience Australia, in collaboration with state and territory geological surveys, the National Research Facility for Earth Sounding (ANSIR) and AuScope. During this program approximately 6,500 line kilometres of deep crustal seismic reflection data were acquired and processed. The seismic images provide an understanding of the crustal architecture of sedimentary basins and their tectonic relationship to older basement terrains. Deep crust and upper mantle structures were also imaged and the Moho boundary could often be interpreted. The 2D seismic reflection data were acquired using three vibroseis trucks, with three 12 s variable frequency sweeps at each vibration point, usually with frequencies from 6 to 96 Hz. Correlated 20 s data were recorded, imaging to approximately 60 km depth. 300 geophone groups at 40 m intervals and 80 m source intervals provided 75 fold data. Data processing included imaging shallow sedimentary basins and also complex, deep, steeply dipping crystalline rock structures with high stacking velocities and out of plane energy. The seismic data, complemented by other geophysical and geological data, helped constrain and develop geological models. These models improved the understanding of crustal architecture in known hydrocarbon and metalliferous provinces as well as in frontier geological terrains.

  • The northern Perth Basin is an under-explored part of the southwest continental margin of Australia. Parts of this basin have proven hydrocarbon potential. The basin is extensively covered by mostly 2D seismic reflection data and marine gravity and magnetic data. The seismic data helps to resolve the structural framework of the basin, but in deepwater regions, the basement-cover contact and deeper basement structure are generally not well imaged. To help overcome this limitation, integrated 3D gravity modelling was used to investigate crustal structure in onshore and offshore parts of the basin. Such modelling also relies on knowledge of crustal thickness variations, but these variations too are poorly constrained in this area. Multiple models were constructed in which the seismic data were used to fix the geometry of sedimentary layers and the fit to observed gravity was examined for various different scenarios of Moho geometry. These scenarios included: 1) a Moho defined by Airy isostatic balance, 2) a Moho based on independently-published Australia-wide gravity inversion, and 3) attempts to remove the Moho gravity effect by subtracting a long-wavelength regional trend defined by GRACE/GOCE satellite data. The modelling results suggest that the best fit to observed gravity is achieved for a model in which the thickness of the crystalline crust remains roughly constant (i.e. deeper Moho under sediment depocentres) for all but the outermost parts of the basin. This finding has implications for understanding the evolution of the Perth Basin, but remains susceptible to uncertainties in sediment thickness.

  • Preserved within the Glenelg River Complex of SE Australia is a sequence of metamorphosed late Neoproterozoic-early Cambrian deep marine sediments intruded by mafic rocks ranging in composition from continental tholeiites to mid-ocean ridge basalts. This sequence originated during breakup of the Rodinia supercontinent and is locally host to lenses of variably sheared and serpentinised mantle-derived peridotite (Hummocks Serpentinite) representing the deepest exposed structural levels within the metamorphic complex. Direct tectonic emplacement of these rocks from mantle depths is considered unlikely and the ultramafites are interpreted here as fragments of sub-continental lithosphere originally exhumed at the seafloor during continental breakup through processes analogous to those that produced the hyper-extended continental margins of the North Atlantic. Subsequent to burial beneath marine sediments, the exhumed ultramafic rocks and their newly acquired sedimentary cover were deformed and tectonically dismembered during arc-continent collision accompanying the early Paleozoic Delamerian Orogeny, and transported to higher structural levels in the hangingwalls of west-directed thrust faults. Thrust-hosted metasedimentary rocks yield detrital zircon populations that constrain the age of mantle exhumation and attendant continental breakup to be no later than late Neoproterozoic-earliest Cambrian. A second extensional event commencing ca. 490 Ma overprints the Delamerian-age structures; it was accompanied by granite magmatism and low pressure-high temperature metamorphism but outside the zone of magmatic intrusion failed to erase the original, albeit modified, rift geometry. This geometry originally extended southward into formerly contiguous parts of the Ross Orogen in Antarctica where mafic-ultramafic rocks are similarly hosted by a deformed continental margin sequence.

  • Continental rifting and the separation of Australia from Antarctica commenced in the Middle-Late Jurassic and progressed from west to east through successive stages of crustal extension, basement-involved syn-rift faulting and thermal subsidence until the Cenozoic. Early syn-rift faults in the Bight Basin developed during NW-SE directed extension and strike mainly NE and E-W, parallel to reactivated basement structures of Paleoproterozoic or younger age in the adjacent Gawler craton. This extension was linked to reactivation of NW-striking basement faults that predetermined not only the point of breakup along the cratonic margin but the position and trend of a major intracontinental strike-slip shear zone along which much of the early displacement between Australia and Antarctica was accommodated. Following a switch to NNE-SSW extension in the Early Cretaceous, the locus of rifting shifted eastwards into the Otway Basin where basin evolution was increasingly influenced by transtensional displacements across reactivated north-south-striking terrane boundaries of Paleozoic age in the Delamerian-Ross and Lachlan Orogens. This transtensional regime persisted until 55 Ma when there was a change to north-south rifting with concomitant development of an ocean-continent transform boundary off western Tasmania and the South Tasman Rise. This boundary follows the trace of an older Paleozoic structure optimally oriented for reactivation as a strike-slip fault during the later stages of continental breakup and is one of two major basement structures for which Antarctic equivalents are readily identified. Some ocean floor fracture zones lie directly along strike from these reactivated basement structures, pointing to a link between basement reactivation and formation of the ocean floor fabrics. Together with the two basement structures, these fabrics serve as an important first order control on palaeogeographic reconstructions of the Australian and Antarctic conjugate margins.

  • Paleogeographic reconstructions of the conjugate Australian and Antarctic rifted continental margins based on geological versus plate tectonic considerations are rarely, if ever, fully compatible. Possible exceptions include a recently published plate tectonic reconstruction combining ocean floor fabrics and magnetic anomalies with revised rotational poles for successive extensional events in the region that coincidently brings about a match between the Kalinjala Mylonite Zone in South Australia and Mertz Shear Zone in Antarctica (Whittaker et al., 2007). A match between these two crustal-scale shear zones has been previously proposed on isotopic and geological grounds (Di Vincenzo et al., 2007; Goodge and Fanning, 2010). However, whereas the Mertz Shear Zone marks the western limits of ca. 500 Ma magmatic activity in Antarctica (Delamerian-Ross Orogen), the Kalinjala Mylonite Zone lies well to the west of this magmatic front and is bounded either side by rocks of the Mesoarchean-Mesoproterozoic Gawler craton. An alternative geological match for the Mertz Shear Zone in Australia is the hitherto unrecognised Coorong Shear Zone in South Australia (Fig. 1), tracts of which have been intruded by gabbro and granite of Delamerian-Ross age and west of which such rocks are either completely absent or greatly reduced in volume. The north-south-trending Coorong Shear Zone lies directly along strike from the (Spencer-) George V Fracture Zone and is clearly visible in aeromagnetic images and offshore deep seismic reflection data as a steep to subvertical crustal-penetrating basement structure across which there is an abrupt change in the orientation of magnetic fabrics and sedimentary basin fault geometries. An equally conspicuous change of direction is evident in ocean floor fabrics immediately offshore, inviting speculation that the along-strike George V Fracture Zone originated through reactivation of the older Coorong Shear Zone and shares the same orientation as the original basement structure. Correlation of this basement structure with the Mertz Shear Zone leads to a reconstruction of the Australian and Antarctic continental margins in which Antarctica and the entrained Mertz Shear Zone are located farther east than some recent restorations allow (Fig. 1). These restorations commonly fail to take into account an episode of NE-SW to NNE-SSW-directed extension preserved in the sedimentary and seismic record of the neighbouring Otway Basin and which is intermediate in age between initial NW-SE directed rifting in the Bight Basin and later N-S rifting that affected all of the continental margin and produced most of the ocean floor fabrics, including all of the major oceanic fracture zones. The Coorong basement structure was briefly reactivated as a sinistral strike-slip fault during this phase of NE-SW extension, but failed to evolve into a continental transform fault as was the case farther east off the southwest coast of Tasmania. There, an analogous pre-existing north-south-trending basement structure identified as the Avoca-Sorell Shear Zone was optimally oriented for reactivation as a strike-slip faulting during north-south rifting (Gibson et al., 2011). This reactivated structure is continuous along strike with the Tasman Fracture Zone and shares many similarities with the Coorong Shear Zone, separating not only basement domains with opposing magnetic fabrics but sedimentary rift basins with differently oriented sets of normal faults. Together, these two basement structures constitute an important first order constraint on palaeogeographic reconstructions of the Australian and Antarctic margins, and serve as a critical test of future palaeogeographic reconstructions based on ocean floor fabrics and plate tectonic considerations.

  • Australia's North West Margin (NWAM) is segmented into four discrete basins which have distinct rift and reactivation histories: Carnarvon, offshore Canning (Roebuck), Browse and Bonaparte. Bonaparte Basin incorporates Vulcan and Petrel sub-basins. The Bonaparte Basin stands out as an extensive sedimentary basin which has a geological history spanning almost the entire Phanerozoic, with up to 20 km of sediment accumulation in the centre. Browse Basin has considerably less thick sediment accumulation ? 12 km at maximum, which is still high for general hydrocarbon potential estimation. The structural architecture of the region is the product of a number of major tectonic events, including: ? Late Devonian northeast-southwest extension in the Petrel Sub-basin; ? Late Carboniferous northwest-southeast extension in the proto-Malita Graben, Browse Basin and proto-Vulcan Sub-basin; ? Late Triassic north-south compression; ? Early-Mid Jurassic development of major depocentres in the Exmouth, Barrow and Dampier sub-basins, and extension in the Browse Basin; ? Mid-Late Jurassic breakup in the Argo Abyssal Plain, onset of thermal sag in the Browse basin and extension in the Bonaparte Basin; ? Valanginian breakup in the Gascoyne and Cuvier abyssal plains, and onset of thermal sag in the Bonaparte Basin; and ? Late Miocene reactivation and flexural downwarp of the Timor Trough and Cartier Sub-basin Many of these events have involved processes of lower crustal extension and are strongly controlled by the pre-existing regional structural fabrics and basement character. Most reliable information on basement and deep crustal structure in the region comes from combined ocean-bottom seismograph (OBS) and deep reflection profiling along several regional transects (including Vulcan and Petrel transects in the Bonaparte Basin, and one transect in the Browse Basin). Average spacing between the OBSs of 30 km and shot spacing of 100 m with data recording to maximum offsets of 300 km enabled development of accurate crustal-scale seismic velocity models. Deep reflection data along the coincident profiles were recorded as part of Geoscience Australia?s regional grid of seismic lines. Consistent interpretation of several key horizons tied to petroleum exploration wells through the entire grid created the basis for co-interpretation of the OBS and deep reflection data supplemented by gravity field modelling.

  • The New Caledonia Trough is a bathymetric depression 200-300 km wide, 2300 km long, and 1.5-3.5 km deep between New Caledonia and New Zealand. In and adjacent to the trough, seismic stratigraphic units, tied to wells, include: Cretaceous rift sediments in faulted basins; Late Cretaceous to Eocene pelagic drape; and ~1.5 km thick Oligocene to Quaternary trough fill that was contemporaneous with Tonga-Kermadec subduction. A positive free-air gravity anomaly of 30 mGal is spatially correlated with the axis of the trough. We model the evolution of the New Caledonia Trough as a two-stage process: (i) trough formation in response to crustal thinning (Cretaceous and/or Eocene); and (ii) post-Eocene trough-fill sedimentation. To best fit gravity data, we find that the effective elastic thickness (Te) of the lithosphere was low (5-10 km) during Phase (i) trough formation and high (20-40 km) during Phase (ii) sedimentation, though we cannot rule out a fairly constant Te of 10 km. The inferred increase in Te with time is consistent with thermal relaxation after Cretaceous rifting, but such a model is not in accord with all seismic-stratigraphic interpretations. If most of the New Caledonia Trough topography was created during Eocene inception of Tonga-Kermadec subduction, then our results place important constraints on the associated lower-crustal detachment process and suggest that failure of the lithosphere did not allow elastic stresses to propagate regionally into the over-riding plate. We conclude that the gravity field places an important constraint on geodynamic models of Tonga-Kermadec subduction initiation.