From 1 - 6 / 6
  • <div><strong>Output Type:</strong> Exploring for the Future Extended Abstract</div><div><br></div><div><strong>Short Abstract: </strong>An advanced understanding of regional-scale metallogenic characteristics and ore-formation controls is fundamental for mineral discovery, particularly in underexplored covered terranes, such as the Delamerian Orogen of southeastern Australia. The Delamerian Orogen is defined as the spatial extent of rocks first deformed by the Delamerian Orogeny, though the Orogen was also affected by younger geodynamic events. Petrology of the mineralised host rocks from over 20 mineral prospects and deposits has led to the recognition of four types of mineral systems related to the geodynamic history of the Delamerian Orogen on mainland Australia, including (1) porphyry-epithermal; (2) volcanic-hosted massive sulphide (VHMS); (3) orogenic gold; and (4) mafic-ultramafic magmatic Cu-Ni-PGE systems. Several other prospects are yet to be classified due to insufficient data, although there is strong evidence to suggest that these are magmatic-hydrothermal in origin. Direct dating of hydrothermal alteration and mineralisation at key mineral deposits and prospects (using U-Pb in titanite and apatite, and Sm-Nd in fluorite) identified four major metallogenic events in the Delamerian Orogen margin. The middle to late Cambrian (505–494 Ma) mineral systems, throughout the eastern margin of the Delamerian Orogen, are potentially the most significant. However, our new dating indicates other metallogenic events at 590–580 Ma, 480–460 Ma, and 412–399 Ma. Analysis of data related to mineral systems fertility reveals crustal controls on the location and type of mineralisation in the Delamerian Orogen. Integration of Hf and O isotopes in zircon, and S isotopes in sulphide minerals indicates that the geology of the Orogen may host multiple opportunities for mineral system development. An indicative map of ca.600–400 Ma mineral system potential was developed by integrating this new data, together with other geological, geochemical and geophysical datasets within the geodynamic context of the Delamerian Orogen. Importantly, this study demonstrates the metallogenic characteristics of multiple types and episodes of mineral system development, and the geological processes that have controlled their formation to aid exploration.</div><div><br></div><div><strong>Citation: </strong>Cheng, Y., Gilmore, P., Lewis, C., Roach, I., Clark, A., Mole, D., Pitt, L., Doublier, M., Sanchez, G., Schofield, A., O'Rourke, A., Budd, A., Huston, D., Czarnota, K., Meffre, S., Feig, S., Maas, R., Gilbert, S., Cairns, C., Cayley, R., Wise, T., Wade, C., Werner, M., Folkes, C. &amp; Hughes, K., 2024. Mineral systems and metallogeny of the Delamerian Orogen margin. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts. Geoscience Australia, Canberra. https://doi.org/10.26186/149657</div><div><br></div>

  • <div>This video gives an overview of the $225 million Exploring for the Future program (2016-2024), the Australian Government’s flagship precompetitive geoscience initiative. It uses cutting-edge technologies and approaches to deliver world-leading information about the geological structure, systems and evolution of the Australian continent.</div>

  • <div>To set out how Geoscience Australia is meeting its vision for the Exploring for the Future program, we have summarised the ways our scientific activities, outputs and intended outcomes and impacts are linked, using the Impact Pathway diagram. This updated brochure includes program impact infographics.</div>

  • Groundwater supports many communities and industries and provides water for environmental assets around Australia, including rivers, springs, wetlands and groundwater-dependent ecosystems (GDEs). Groundwater, accounts for over 30% of Australia’s total water consumption (NWC 2008) with uses including drinking, irrigation, stock supply and bottling. The demand for groundwater is steadily growing, as Australia’s industrial and agricultural development increases. Knowledge of aquifers and fundamental groundwater processes are important for managing the quantity, quality and sustainability of this resource. Monitoring groundwater by analysing its chemical constituents is integral to understanding groundwater systems and aids effective management. Sampling and analysing groundwater on a regular basis provides a useful tool to understand and monitor changes to groundwater systems. Depending on the purpose of monitoring, a comprehensive, fit-for-purpose, suite of parameters should be collected and tested. Groundwater sampling requires specialised methods and approaches to acquire samples for analysis that represent the in-situ groundwater hydrogeochemical and hydrogeological conditions. Multiple government agencies have produced guidelines to address specific groundwater issues, including: groundwater sampling (Jiwan & Gates, 1992; Rayment & Poplawski, 1992; Hill, 2007; EPA Victoria, 2022; ANSTO; and NMI); groundwater quality sampling in the Murray-Darling Basin (MDBC 1997); groundwater monitoring for community groups (Waterwatch 2005); and sampling for contaminated sites (AWRC, 1991). Groundwater sampling and analysis is a tool that can be used for multiple geoscientific purposes, including: groundwater resource assessment; management and monitoring; carbon capture and storage; mineral exploration; geothermal energy; and energy and resource industries. This document provides a comprehensive guide, applicable to a range of geoscientific disciplines, that draws together information on drilling methods, bore construction, sampling equipment and sampling methods for groundwater analysis. This guide contains standard groundwater sampling protocols, also known as standard operating procedures (SOPs), commonly used by Geoscience Australia (GA) over the last decade. These protocols aim to provide consistency for the acquisition of accurate, repeatable and comparable groundwater datasets and provides confidence in their analysis and interpretation.

  • <div>The Exploring for the Future program (EFTF) is a $225M Federal Government-funded initiative spanning the period July 2016 to June 2024. This multi-disciplinary program involves aspects of method development and new pre-competitive data acquisition at a variety of scales, with the aim of building an integrated understanding of Australia’s mineral, energy and groundwater potential. Significant work has been undertaken across northern Australia within regional-scale projects and as part of national-scale data acquisition and mapping activities. Some of these activities have been largely completed, and have generated new data and products, while others are ongoing. A comprehensive overview of the EFTF program can be found via the program website (eftf.ga.gov.au). Here, we overview a range of activities with implications for resource exploration in the Northern Territory.</div><div><br></div>This Abstract was submitted & presented to the 2023 Annual Geoscience Exploration Seminar (AGES), Alice Springs (https://industry.nt.gov.au/news/2022/december/registrations-open-for-ages-2023)

  • <div>This Record presents data collected as part of the ongoing Northern Territory Geological Survey–Geoscience Australia SHRIMP geochronology project under the National Collaboration Framework agreement. New U-Pb SHRIMP zircon geochronological results were derived from six samples of sedimentary rocks collected from two petroleum exploration drillholes (CBM 107-001 and CBM 107-002) that intersect the Pedirka Basin in the southeastern corner of the Northern Territory.</div><div><br></div><div>Geologically, this is a region in the Simpson Desert that encompasses several superimposed intracratonic sedimentary basins, which are separated by regional unconformities extending over areas of adjoining Queensland, South Australia and New South Wales. In the southeastern corner of the Northern Territory, the Pedirka Basin is one of three stacked basins. The exposed Mesozoic Eromanga Basin overlies the late Palaeozoic to Triassic Pedirka Basin, which is largely restricted to the subsurface, and in turn overlies the Palaeozoic pericratonic Warburton Basin (Munson and Ahmad 2013).</div><div><br></div><div>As the Pedirka Basin is almost entirely concealed beneath the Eromanga Basin, our current understanding of the geology in this southeastern corner of the Northern Territory is constrained by a limited number of exploration drillholes and 2D seismic coverage (Doig 2022). The samples described herein were collected to aid in defining the chronostratigraphy and sedimentary provenance characteristics of the Pedirka Basin.</div><div><br></div><div>BIBLIOGRAPHIC REFERENCE: Jones S.L., Jarrett A.J., Verdel C.S. and Bodorkos S. 2024. Summary of results. Joint NTGS–GA geochronology project: Pedirka Basin. Northern Territory Geological Survey, Record 2024-003.</div>