Climate Change Processes
Type of resources
Keywords
Publication year
Topics
-
Queensland Fire and Emergency Services are leading the development of consistent risk information relating to the potential impacts of disasters across Queensland. The stated aim is to ensure all local, district and state government stakeholders have access to the same information to guide risk-based planning in the preparation for natural disasters. This extends to future projections natural hazard activity, including tropical cyclones (TC), in the Queensland region. To achieve this last objective, Queensland’s Department of Environment and Science (DES) have undertaken a program of regional climate simulations, with a view to informing long-term planning decisions. When it comes to TCs – a major cause of disasters in Queensland – many of the stakeholders want to answer the question: “How many severe tropical cyclones will the future hold for us?”, or similar questions around the likelihood of TC occurrence. To answer this, DES and Geoscience Australia are interrogating the regional climate simulations to extract Tropical Cyclone-Like Vortices (TCLVs). The behaviour of these TCLVs is then analysed to understand changes in frequency, intensity and spatial distribution. The TCLVs – with some additional bias corrections - can also be used as input to stochastic models that can provide probabilistic wind hazard information across the entire state of Queensland. In this paper we demonstrate the challenges of extracting TCLVs from regional climate models and the bias corrections required to make useful projections of TC activity into the future. Abstract presented at the 2020 Australian Meteorological and Oceanographic Society 2020 National Conference (http://amos-2020.w.amos.currinda.com/)
-
<div>Australia has been supporting 13 Pacific Island countries (PICs) to measure, record and analyse long-term sea level and land motion for over 25 years. This is known as the Pacific Sea Level and Geodetic Monitoring (PSLGM) project which is funded by Australian Aid under the Climate and Oceans Support Program in the Pacific (COSPPac). </div><div>The sea level data is collected continuously at one or two tide gauges in each of the 13 PICs. The land motion data is collected continuously at one or two Global Navigation Satellite System (GNSS) stations in each of the 13 PICs. The height difference between the tide gauges and GNSS stations is observed once every 18 months (approximately). The data is then analysed to produce sea level information-based products (e.g. tide calendars) and to inform about motion of the land (e.g. for coastal infrastructure planning). </div><div>The PSLGM project involves Australian science agencies (Bureau of Meteorology (Bureau) and Geoscience Australia (GA)) working in partnership with regional organisations (Pacific Community (SPC)), and Pacific government ministries (meteorology and land and survey departments).</div><div><br></div><div>This GA Record reports findings regarding the absolute vertical rate of movement (i.e. the rate at which the land is moving up or down with respect to the centre of the Earth) of 13 Pacific Island Countries tide gauges over the period 2003 – 2022 based on the analysis of Global Navigation Satellite System (GNSS) data and levelling data. </div><div><br></div>