From 1 - 6 / 6
  • <div>Geoscience Australia’s Onshore Basin Inventories project provides a whole-of-basin inventory of geology, petroleum systems, exploration status and data coverage of hydrocarbon-prone onshore Australian sedimentary basins. Two existing volumes cover many central and north Australian onshore basins, providing a single point of reference and creating a standardised national basin inventory. In addition to summarising the current state of knowledge within each basin, the onshore basin inventory reports identify critical science questions and key exploration uncertainties that may help inform future work program planning and aid in decision making for both government and industry organisations. </div><div><br></div><div>Under Geoscience Australia’s Exploring for the Future (EFTF) program, several new onshore basin inventory reports are being delivered. The next releases include the Adavale Basin of southern Queensland and a compilation of Australia’s Mesoproterozoic basins. These reports are supported by value-add products that address identified data gaps and evolve regional understanding of basin evolution and prospectivity, including petroleum systems modelling, seismic reprocessing and regional geochemical studies. The Onshore Basin Inventories project continues to provide scientific and strategic direction for pre-competitive data acquisition under the EFTF work program, guiding program planning and shaping post-acquisition analysis programs.<br> <b>Citation: </b>Bailey Adam H. E., Carr Lidena K., Korsch Russell (2023) Australia’s Onshore Basin Inventories – foundational knowledge synthesis for better design of precompetitive data acquisition. <i>The APPEA Journal </i><b>63</b>, S209-S214. https://doi.org/10.1071/AJ22045

  • <div>The Petroleum Systems Summary database stores the compilation of the current understanding of petroleum systems information by basin across Australia. The Petroleum Systems Summary database and delivery tool provide high-level information of the current understanding of key petroleum systems for areas of interest. For example, geological studies in the Exploring for the Future (EFTF) program have included the Canning, McArthur and South Nicholson basins (Carr et al., 2016; Hashimoto et al., 2018). The database and tool aim to assist geological studies by summarising and interpreting key datasets related to conventional and unconventional hydrocarbon exploration. Each petroleum systems summary includes a synopsis of the basin and key figures detailing the basin outline, major structural components, data availability, petroleum systems events chart and stratigraphy, and a précis of the key elements of source, reservoir and seal. Standardisation of petroleum systems nomenclature establishes a framework for each basin after Bradshaw (1993) and Bradshaw et al. (1994), with the source-reservoir naming conventions adopted from Magoon and Dow (1994).&nbsp;</div><div><br></div><div>The resource is accessible via the Geoscience Australia Portal&nbsp;(https://portal.ga.gov.au/) via the Petroleum Systems Summary Tool (Edwards et al., 2020).</div>

  • <div>The Trusted Environmental and Geological Information (TEGI) Program (2021-2023) was a multi-disciplinary program that brought together the geology, energy resources, groundwater, carbon and hydrogen storage, mineral occurrences, surface water and ecology for four Australian basin regions. This talk covers how the team leveraged their varied scientific expertise to deliver integrated scientific outcomes for the North Bowen, Galilee, Cooper and Adavale basin regions. This talk highlights the approach and importance of meaningful engagement with those that live in, work in, rely on and care for the regions. The story of the TEGI program outlines how a committed team, collaborating across Australia’s leading scientific organisations, delivered genuine impact during a time of political change.</div><div><br></div>

  • Petroleum geochemical datasets and information are essential to government for evidence-based decision making on natural resources, and to the petroleum industry for de-risking exploration. Geoscience Australia’s newly built Data Discovery Portal (https://portal.ga.gov.au/) enables digital discoverability and accessibility to key petroleum geochemical datasets. The portal’s web map services and web feature services allow download and visualisation of geochemical data for source rocks and petroleum fluids, and deliver a petroleum systems framework for northern Australian basins. The Petroleum Source Rock Analytics Tool enables interrogation of source rock data within boreholes and field sites, and facilitates correlation of these elements of the petroleum system within and between basins. The Petroleum Systems Summary Assessment Tool assists the user to search and query components of the petroleum system(s) identified within a basin. The portal functionality includes customised data searches, and visualisation of data via interactive maps, graphs and geoscientific tools. Integration of the petroleum systems framework with the supporting geochemical data enables the Data Discovery Portal to unlock the value of these datasets by affording the user a one-stop access to interrogate the data. This allows greater efficiency and performance in evaluating the petroleum prospectivity of Australia’s sedimentary basins, facilitating and accelerating decision making around exploration investment to ensure Australia’s future resource wealth <b>Citation:</b> Edwards, D.S., MacFarlane, S.K., Grosjean, E., Buckler, T., Boreham, C.J., Henson, P., Cherukoori, R., Tracey-Patte, T., van der Wielen, S., Ray, J. and Raymond, O., 2020. Australian source rocks, fluids and petroleum systems – a new integrated geoscience data discovery portal for maximising data potential. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • <div>This dataset represents the second version of a compilation of borehole stratigraphic unit data on a national scale (Figure 1). It builds on the previous Australian Borehole Stratigraphic Units Compilation (ABSUC) Version 1.0 (Vizy &amp; Rollet, 2023a) with additional new or updated stratigraphic interpretation on key boreholes located in Figure 2. Its purpose is to consolidate and standardise publicly accessible information from boreholes, including those related to petroleum, stratigraphy, minerals, and water. This compilation encompasses data from states and territories, as well as less readily available borehole logs and interpretations of stratigraphy.</div><div>&nbsp;</div><div>This study was conducted as part of the National Groundwater Systems (NGS) Project within the Australian Government's Exploring for the Future (EFTF) program. Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. More information is available at http://www.ga.gov.au/eftf and https://www.eftf.ga.gov.au/national-groundwater-systems.</div><div>&nbsp;</div><div>As our understanding of Australian groundwater systems expands across states and territories, including legacy data from the 1970s and recent studies, it becomes evident that there is significant geological complexity and spatial variability in stratigraphic and hydrostratigraphic units nationwide. Recognising this complexity, there is a need to standardise diverse datasets, including borehole location and elevation, as well as variations in depth and nomenclature of stratigraphic picks. This standardisation aims to create a consistent, continent-wide stratigraphic framework for better understanding groundwater system for effective long-term water resource management and integrated resource assessments.</div><div>&nbsp;</div><div>This continental-scale compilation consolidates borehole data from 53 sources, refining 1,117,693 formation picks to 1,010,483 unique records from 171,396 boreholes across Australia. It provides a consistent framework for interpreting various datasets, enhancing 3D aquifer geometry and connectivity. Each data source's reliability is weighted, prioritising the most confident interpretations. Geological units conform to the Australian Stratigraphic Units Database (ASUD) for efficient updates. Regular updates are necessary to accommodate evolving information. Borehole surveys and dip measurements are excluded. As a result, stratigraphic picks are not adjusted for deviation, potentially impacting true vertical depth in deviated boreholes.</div><div>&nbsp;</div><div>This dataset provides:</div><div>ABSUC_v2&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Australian stratigraphic unit compilation dataset (ABSUC)</div><div>ABSUC_v2_TOP&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A subset of preferred top picks from the ABSUC_v2 dataset</div><div>ABSUC_v2_BASE&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A subset of preferred base picks from the ABSUC_v2 dataset</div><div>ABSUC_BOREHOLE_v2&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;ABSUC Borehole collar dataset</div><div>ASUD_2023&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A subset of the Australia Stratigraphic Units Database (ASUD)</div><div>&nbsp;</div><div>Utilising this uniform compilation of stratigraphic units, enhancements have been made to the geological and hydrogeological surfaces of the Great Artesian Basin, Lake Eyre Basin and Centralian Superbasin. This compilation is instrumental in mapping various regional groundwater systems and other resources throughout the continent. Furthermore, it offers a standardised approach to mapping regional geology, providing a consistent foundation for comprehensive resource impact assessments.</div>

  • <div>Australia is the driest inhabited continent on Earth and groundwater is crucial to maintaining the country’s population, economic activities, Indigenous culture and environmental values. Geoscience Australia is renewing a national-scale focus to tackle hydrogeological challenges by building upon our historic legacy in groundwater studies at regional and national scales.</div><div><br></div><div>The most comprehensive hydrogeological coverage of the nation is the 1987 Hydrogeology of Australia map, developed by a predecessor of Geoscience Australia. This map provides an overview of groundwater systems and principal aquifers across Australia, based upon the large sedimentary basins, intervening fractured rock areas and smaller overlying sedimentary/volcanic aquifers. However, the currency and completeness of the information presented and accompanying the national hydrogeology map needs to be improved. Updating the extents, data and scientific understanding of the hydrogeological regions across Australia, and improving the accessibility and useability of this information will address many of its current limitations.</div><div><br></div><div>Geoscience Australia, within its Exploring for the Future program, is compiling hydrogeological and related contextual information clearly and consistently across Australia’s major sedimentary basins and intervening fractured rock provinces. This information has been collected for 41 major hydrogeological regions spanning the continent: 36 sedimentary basins and 5 regions dominated by fractured-rock aquifers. The information, collected through a combination of geospatial analyses of national datasets and high-level summaries of scientific literature, will be presented through Geoscience Australia’s online data discovery portal, thereby enabling improved interrogation and integration with other web mapping services.</div><div><br></div><div>The new compilation of nationally consistent groundwater data and information will help to prioritise future investment for new groundwater research in specific regions or basins, inform the work programs of Geoscience Australia and influence the prioritisation of national hydrogeological research more broadly.&nbsp;</div><div><br></div>This Abstract was submitted/presented to the 2022 Australasian Groundwater Conference 21-23 November (https://agc2022.com.au/)