From 1 - 10 / 24
  • <div>In mid-2022 two paleoseismic trenches were excavated across the Willunga Fault at Sellicks Hill, ~40 km south of Adelaide, at a location where range front faulting displaces a thick colluvial apron, and flexure in the hanging wall has produced an extensional graben. Vertical separation between time-equivalent surfaces within the Willunga Embayment and uplifted Myponga Basin indicate an average uplift rate of 40 m/Myr since 5 Ma across the Willunga fault at the trench location, equivalent to a slip rate of 57 m/Myr across a 45° dipping fault. </div><div> The field sites preserve evidence for at least 4-5 large earthquake events involving approximately 6.9 m of discrete slip on fault planes since the Mid to Late Pleistocene. If the formation of red soil marker horizons in the trenches are assumed to relate to glacial climatic conditions then a slip-rate of 26-46 m/Myr since the Mid Pleistocene is obtained. These deformation rate estimates do not include folding in the hanging wall of the fault, which is likely to be significant at this site as evidenced by the existence of a pronounced hanging wall anticline. In the coming months, the results of dating analysis will allow quantitative constraint to be placed on earthquake timing and slip-rate, and a structural geological study seeks to assess the proportion of deformation partitioned into folding of the hanging wall.</div><div> The 2022 trenches represent the most recent of ten excavated across this fault. Integration of the 2022 data with those from previous investigations will allow fundamental questions to be addressed, such as whether the Willunga fault ruptures to its entire length, or in a segmented fashion, and whether any segmentation behaviour is reflected in local slip-rate estimates. Thereby we hope to significantly improve our understanding of the hazard that this, and other proximal Quaternary-active faults, pose to the greater Adelaide conurbation and its attendant infrastructure.</div> This paper was presented to the 2022 Australian Earthquake Engineering Society (AEES) Conference 24-25 November (https://aees.org.au/aees-conference-2022/)

  • <div>New SHRIMP U-Pb detrital zircon geochronology on Mesoproterozoic and Paleoproterozoic siliciclastic rocks from the South Nicholson region, in concert with recently acquired complementary regional geophysical datasets, has enabled comprehensive revision of the regional Proterozoic tectono-stratigraphy. The identification of analogous detrital zircon spectra between units deposited in half-graben hanging walls of major ENE-WSW trending extensional faults, the Benmara, Bauhinia, and Maloney-Mitchiebo faults, offers compelling evidence for regional tectono-stratigraphic correlation. Units sampled from the hanging walls of these faults are characterised by immature proximal lithofacies and host a small yet persistent population of <em>ca</em> 1640–1650 Ma aged zircon and lack Mesoproterozoic detritus, consistent with deposition coincident with extension during the River Extension event at <em>ca</em> 1640 Ma, an event previously identified from the Lawn Hill Platform in western Queensland. This finding suggests the hanging wall sequences are chrono-stratigraphically equivalent to the highly prospective sedimentary rocks of the Isa Superbasin, host to world-class sediment-hosted base metal deposits across western Queensland and north-eastern Northern Territory. Subsequent inversion of the extensional faults, resulted in development of south-verging thrusts, and exhumation of late Paleoproterozoic hanging wall siliciclastic rocks through overlying Mesoproterozoic South Nicholson Group rocks as fault propagated roll-over anticlines. These geochronology data and interpretations necessitate revision of the stratigraphy and the renaming of a number of stratigraphic units in the South Nicholson region. Accordingly, the distribution of the highly prospective late Paleoproterozoic units of the McArthur Basin, Lawn Hill Platform and Mount Isa Province is greatly expanded across the South Nicholson region. These findings imply that the previously underexplored South Nicholson region is a highly prospective greenfield for energy and mineral resources.</div> <b>Citation:</b> C. J. Carson, N. Kositcin, J. R. Anderson & P. A. Henson (2023) A revised Proterozoic tectono-stratigraphy of the South Nicholson region, Northern Territory, Australia—insights from SHRIMP U–Pb detrital zircon geochronology, <i>Australian Journal of Earth Sciences,</i> DOI: 10.1080/08120099.2023.2264355

  • <div><strong>Output type: </strong>Exploring for the Future Extended Abstract </div><div><br></div><div><strong>Short Abstract: </strong>The Delamerian Orogen, with a length of ~1000 km on mainland Australia and a proven potential to host mineralisation, represents an evolving exploration opportunity. However, uncertainty surrounding the age and tectonic setting of the orogen is a barrier to confident exploration in frontier covered regions, such as the Loch Lilly-Kars Belt in western New South Wales and South Australia. A major area of uncertainty is the configuration and extent of the Cambrian convergent-margin system and lateral variations thereof. In this study, we highlight multidisciplinary data from new and legacy sources, including lithology, geochronology, geochemistry, potential-field geophysics, deep-crustal seismic, and magnetotelluric data that permit a revised interpretation of the geological framework for the Delamerian Orogen in mainland Australia, with an emphasis on the covered, central part of the system. These data indicate that a largely continuous, east-facing volcanic arc developed in the Delamerian Orogen in the Cambrian. The arc transitions from exhibiting a strong continental affinity in the Koonenberry Belt to having less continental affinity in the Grampians-Stavely Zone of Victoria. The Loch Lilly-Kars Belt is interpreted to have occupied a volcanic arc to incipient back-arc position in the middle Cambrian.&nbsp;</div><div><br></div><div><strong>Citation: </strong>Clark A.D., et al., 2024. Cambrian convergent margin configuration in the Delamerian Orogen of mainland Australia. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://doi.org/10.26186/149647 </div>

  • <div><strong>Output type: </strong>Exploring for the Future Extended Abstract</div><div><br></div><div><strong>Short abstract: </strong> Crustal architecture provides first order controls on the distribution of mineral resources of an area and is best imaged by deep seismic reflection data. Here we present a first interpretation of seismic line 22GA-CD2, acquired as part of the Darling-Curnamona-Delamerian (DCD) project. Line 22GA-CD2 images the central eastern Delamerian Orogen, where basement rocks are concealed by the Murray Basin. Key findings include: (i) the crustal architecture preserves many characteristics of the early evolution of west-dipping Delamerian subduction, accretion and orogeny between ~ 515 Ma - 495 Ma. This initial configuration has been reworked and reactivated during younger orogenic events; (ii) the lower and middle crust constitutes the newly defined Barrier Seismic Province, which is also imaged in legacy seismic reflection line 05GA-TL1 and interpreted to continue northeast to the Olepoloko Fault; (iii) a similar seismic character to that of the Barrier Seismic Province has been observed in legacy seismic reflection lines in Victoria and related to a Cambrian accretionary setting and adjacent foreland; (iv) the present-day upper crustal configuration is largely the result of contractional fault reactivation, with significant vertical movements during the Kanimblan-Alice Springs Orogeny (~ 360 Ma - 340 Ma); (v) a large area of prospective rocks for mineral deposits with Cambrian arc-affiliation are accessible to exploration under shallow cover of the Murray Basin (often less than 200 m).</div><div>&nbsp;&nbsp;</div><div><strong>Citation: </strong>Doublier M.P., et al., 2024. Crustal architecture along seismic line 22GA-CD2: new insights from the Darling-Curnamona-Delamerian deep seismic reflection survey. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/149658</div>

  • <div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. This work contributes to building a better understanding of the Australian continent, whilst giving the Australian public the tools they need to help them make informed decisions in their areas of interest.</div><div><br></div><div>As part of the Australia's Resources Framework Project, in the Exploring for the Future Program, Geoscience Australia and CSIRO undertook a magnetic source depth study across four areas, with the objectives of generating cover model constraints from magnetic modelling to expand national coverage, and to improve our subsurface understanding of these areas. During this study, 2005 magnetic estimates of depth to the top of magnetization were generated, with solutions derived using a consistent methodology (targeted magnetic inversion modelling, or TMIM; also known as ‘sweet-spot’ modelling). The methodology for these estimates are detailed in a summary report by Foss et al (2024), and is available for download through Geoscience Australia’s enterprise catalogue (https://pid.geoscience.gov.au/dataset/ga/149239). </div><div><br></div><div>The new points were generated over four areas: 1) the western part of Tasmania that is the southernmost extension of the Darling-Curnamona-Delamerian (DCD) project area; 2) northeastern Queensland; 3) the Officer Basin area of western South Australia and southeastern West Australia; and 4) the Eastern Resources Corridor (ERC), covering eastern South Australia, southwest Queensland, western New South Wales and western Victoria. These depth estimates have been released, together with a summary report detailing the data and methodology used to generate the results, through Geoscience Australia's product catalogue (ecat) at https://pid.geoscience.gov.au/dataset/ga/149239.</div><div><br></div><div>This supplementary data release contains the chronostratigraphic attribution of the new TMIM magnetic depth estimates, which range in depth from at surface to 13,294 m below ground. To ensure that the interpretations took into account the local geological features, the magnetic depth estimates were integrated and interpreted with other geological and geophysical datasets, including borehole stratigraphic logs, potential fields images, surface and solid geology maps, and airborne electromagnetic interpretations (where available). </div><div><br></div><div>Each depth-solution is interpretively ascribed to either a chronostratigraphic boundary with the stratigraphic units above and below the depth estimate, or the stratigraphic unit that the depth estimate occurs within, populated from the Australian Stratigraphic Units Database (ASUD). Stratigraphic attribution adds value and informs users of the depth to certain stratigraphic units in their areas of interest. Each solution is accompanied by confidence estimates. The depth estimate points are formatted for compliance with Geoscience Australia’s (GA) Estimates of Geological and Geophysical Surfaces (EGGS) database, the national repository for standardised depth estimate points. </div><div><br></div><div>Results from these interpretations provided some support to stratigraphic drillhole targeting, as part of the Delamerian Margins NSW National Drilling Initiative campaign, a collaboration between GA’s EFTF program, the MinEx CRC National Drilling Initiative and the Geological Survey of New South Wales. The magnetic depth-estimate solutions produced within this study provide important depth constraints in data-poor areas. These data help to construct a better understanding of the 3D geometry of the Australian continent and aid in cover thickness modelling activities. The availability of the depth-estimate solutions via the EGGS database through Geoscience Australia’s Portal creates enduring value to the public.</div>

  • <div>This data package contains interpretations of airborne electromagnetic (AEM) conductivity sections in the Exploring for the Future (EFTF) program’s Eastern Resources Corridor (ERC) study area, in south eastern Australia. Conductivity sections from 3 AEM surveys were interpreted to provide a continuous interpretation across the study area – the EFTF AusAEM ERC (Ley-Cooper, 2021), the Frome Embayment TEMPEST (Costelloe et al., 2012) and the MinEx CRC Mundi (Brodie, 2021) AEM surveys. Selected lines from the Frome Embayment TEMPEST and MinEx CRC Mundi surveys were chosen for interpretation to align with the 20&nbsp;km line-spaced EFTF AusAEM ERC survey (Figure 1).</div><div>The aim of this study was to interpret the AEM conductivity sections to develop a regional understanding of the near-surface stratigraphy and structural architecture. To ensure that the interpretations took into account the local geological features, the AEM conductivity sections were integrated and interpreted with other geological and geophysical datasets, such as boreholes, potential fields, surface and basement geology maps, and seismic interpretations. This approach provides a near-surface fundamental regional geological framework to support more detailed investigations. </div><div>This study interpreted between the ground surface and 500&nbsp;m depth along almost 30,000 line kilometres of nominally 20&nbsp;km line-spaced AEM conductivity sections, across an area of approximately 550,000&nbsp;km2. These interpretations delineate the geo-electrical features that correspond to major chronostratigraphic boundaries, and capture detailed stratigraphic information associated with these boundaries. These interpretations produced approximately 170,000 depth estimate points or approximately 9,100 3D line segments, each attributed with high-quality geometric, stratigraphic, and ancillary data. The depth estimate points are formatted for compliance with Geoscience Australia’s (GA) Estimates of Geological and Geophysical Surfaces (EGGS) database, the national repository for standardised depth estimate points. </div><div>Results from these interpretations provided support to stratigraphic drillhole targeting, as part of the Delamerian Margins NSW National Drilling Initiative campaign, a collaboration between GA’s EFTF program, the MinEx CRC National Drilling Initiative and the Geological Survey of New South Wales. The interpretations have applications in a wide range of disciplines, such as mineral, energy and groundwater resource exploration, environmental management, subsurface mapping, tectonic evolution studies, and cover thickness, prospectivity, and economic modelling. It is anticipated that these interpretations will benefit government, industry and academia with interest in the geology of the ERC region.</div>

  • <div>Lithospheric structure and composition have direct relevance for our understanding of mineral prospectivity. Aspects of the lithosphere can be imaged using geophysical inversion or analysed from exhumed samples at the surface of the Earth, but it is a challenge to ensure consistency between competing models and datasets. The LitMod platform provides a probabilistic inversion framework that uses geology as the fabric to unify multiple geophysical techniques and incorporates a priori geochemical information. Here, we present results from the application of LitMod to the Australian continent. The rasters summarise the results and performance of a Markov-chain Monte Carlo sampling from the posterior model space. Release KY22 is developed using the primary-mode Rayleigh phase velocity grids of Yoshizawa (2014).</div><div><br></div><div>Geoscience Australia's Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia's geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia's transition to a low emissions economy, strong resources and agriculture sectors, and economic opportunities and social benefits for Australia's regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div>

  • <div>The Magnetotelluric (MT) Sites database contains the location of sites where magnetotelluric (MT) data have been acquired by surveys. These surveys have been undertaken by Geoscience Australia and its predecessor organisations and collaborative partners including, but not limited to, the Geological Survey of New South Wales, the Northern Territory Geological Survey, the Geological Survey of Queensland, the Geological Survey of South Australia, Mineral Resources Tasmania, the Geological Survey of Victoria and the Geological Survey of Western Australia and their parent government departments, AuScope, the University of Adelaide, Curtin University and University of Tasmania. Database development was completed as part of Exploring for the Future (EFTF) and the database will utilised for ongoing storage of site information from future MT acquisition projects beyond EFTF. Location, elevation, data acquisition date and instrument information are provided with each site. The MT Sites database is a subset of tables within the larger Geophysical Surveys and Datasets Database. </div><div><br></div><div>The resource is accessible via the Geoscience Australia Portal&nbsp;(https://portal.ga.gov.au/), use Magnetotelluric as your search term to find the relevant data.</div>

  • <div> A key issue for explorers in Australia is the abundant sedimentary and regolith cover obscuring access to underlying potentially prospective rocks. &nbsp;Multilayered chronostratigraphic interpretation of regional broad line-spaced (~20&nbsp;km) airborne electromagnetic (AEM) conductivity sections have led to breakthroughs in Australia’s near-surface geoscience. &nbsp;A dedicated/systematic workflow has been developed to characterise the thickness of cover and the depth to basement rocks, by delineating contact geometries, and by capturing stratigraphic units, their ages and relationships. &nbsp;Results provide a fundamental geological framework, currently covering 27% of the Australian continent, or approximately 2,085,000&nbsp;km2. &nbsp;Delivery as precompetitive data in various non-proprietary formats and on various platforms ensures that these interpretations represent an enduring and meaningful contribution to academia, government and industry.&nbsp;The outputs support resource exploration, hazard mapping, environmental management, and uncertainty attribution.&nbsp;This work encourages exploration investment, can reduce exploration risks and costs, helps expand search area whilst aiding target identification, and allows users to make well-informed decisions. Presented herein are some key findings from interpretations in potentially prospective, yet in some cases, underexplored regions from around Australia.&nbsp;</div> This abstract was submitted & presented to the 8th International Airborne Electromagnetics Workshop (AEM2023) (https://www.aseg.org.au/news/aem-2023)

  • <div>Geoscience Australia's geoscientific relational databases use look-up tables to describe the data stored within. These look-ups contain, but are not limited to, information about boreholes, field geology, inorganic and organic geochemistry, hydrochemistry, geophysics, rock properties, samples and other general geological terms. These terms have then been compiled into a vocabulary of terms for publication via GA's vocabulary service. Within this vocabulary, GA references where sourced terms are published in external vocabularies with a source vocabulary URI (Uniform Resource Identifier). </div><div><br></div><div>All vocabularies, collections of concepts within vocabularies and individual concepts are identified with URI persistent identifiers of the form:</div><div>http://pid.geoscience.gov.au/def/voc/ga/{VOCABULARY-KEY}/{COLLECTION-OR-CONCEPT-NAME}</div>