From 1 - 10 / 1125
  • The data covers an area of approximately 4000 sq km in the Namoi Valley, located around Narrabri, NSW. The LiDAR was captured by RPS Spatial in September and October 2013 with a point density of two points per square metre. The specified accuracies; 30cm vertical and 80cm horizontal, were achieved and verified through a rigorous network of check points and base stations. A set of seamless products were produced including hydro-flattened bare earth DEMs, DSMs, Canopy Height Models (CHM) and Foliage Cover Models (FCM). The outputs of the project are compliant with National ICSM LiDAR Product Specifications and the NEDF.

  • Compilation of new and existing data can be used to show systematic variations in initial ore-related Pb isotope ratios and derived parameters for the Lachlan and Delamerian orogens of southeast Australia. In addition to mapping tectonic boundaries and providing genetic context to mineralising processes, these variations map mineralised provinces at the orogenic scale and can provide vectors to ore at the district scale. In New South Wales and Victoria, mapping using a parameter termed the 'Lachlan Lead Index' (LLI), which measures relative mixing between crustal- and mantle-derived Pb using the curves of Carr et al. (1995, Economic Geology 90:14671505), clearly demarcates the boundary between the Eastern and Central Lachlan provinces, and seems to identify boundaries between zones within the Western Lachlan Province of Victoria. The LLI also maps the extent of the isotopically juvenile Macquarie 'Arc' in New South Wales. However, rocks in the Rockley-Gulgong Belt, initially mapped as part of the Macquarie Arc, have a more evolved isotopic character, suggesting that these rocks are not part of the Macquarie Arc. This interpretation supports recent mapping that casts doubt on the attribution of this belt to the Macquarie Arc (Quinn, et al., 2014, Journal of the Geological Society of London 171:723736). The LLI has also identified small exposures of Ordovician volcanic rocks, well removed from the main Macquarie Arc, as possible correlates to this arc, with potential to host porphyry and epithermal deposits. Metallogenically, porphyry Cu-Au deposits in the Macquarie Arc are characterised by juvenile Pb. In contrast, Sn and Mo deposits in the Central Lachlan Province (i.e., the Wagga tin belt) are characterised by highly evolved Pb even though these deposits formed over 30 million years. Moreover, the Pb isotope data suggest that the original interpretation that copper deposits in the Girilambone district are volcanic-associated massive sulfide deposits was correct and that these deposits formed in a back-arc to the Macquarie Arc at ~480 Ma. In the Mount Read Volcanics of western Tasmania, all deposits appear to cluster along the same growth curve. However, when divided according to age (i.e., Cambrian (~500 Ma) versus Devonian (~360 Ma)), spatial patterns are visible in 206Pb/204Pb data. For Cambrian deposits 206Pb/204Pb decreases overall to the southeast, although low values are also present in the far south (i.e., Elliott Bay) and northeast. The most highly mineralised central part of the belt seems to be broadly associated with the zone of highest 206Pb/204Pb. Variations in 206Pb/204Pb for Devonian deposits broadly mimic the patterns seen for the Cambrian deposits. More importantly, a district-scale pattern in 206Pb/204Pb is present in the Zeehan district. Isotopically, the Sn-dominated core of the Zeehan district (e.g. Queen Hill and Severn deposits) is characterised by high 206Pb/204Pb, which decreases outward into the Zn-Pb-Ag-dominated peripheries. Lead isotope distribution patterns can potentially be used as an ore vector in this and other intrusion-centered mineral systems.

  • Analysis of the distribution patterns of Pb isotope data from mineralised samples using the plumbotectonic model of Carr et al. (1995), which invokes mixing between crustal and mantle reservoirs, indicates systematic spatial patterns that reflect major metallogenic and tectonic boundaries in the Lachlan and Delamerian orogens in New South Wales and Victoria. This distribution pattern accurately maps the boundary between the Central and Eastern Lachlan. The Central Lachlan is characterised by Pb isotope characteristics with a strong crustal signature, whereas the Eastern Lachlan is characterised by variable crustal and mantle signatures. The Macquarie Arc is dominated by Pb with a mantle signature: known porphyry Cu-Au and high sulphidation epithermal Au-Cu deposits in the arc are associated with a zone characterised by the strongest mantle signatures. In contrast, granite-related Sn deposits in the Central Lachlan are characterised by the strongest crustal signatures. The Pb isotope patterns are broadly similar to Nd isotope model age patterns derived from felsic magmatic rocks, although a lower density of Nd isotope analyses makes direct comparison problematic. The two reservoirs identified by Carr et al. (1995) do not appear to be isotopically linked: the crustal source was not formed via extraction from the mantle source. Rather, the two reservoirs must have formed separately. The mantle reservoir may have been sourced from a subducting proto-Pacific plate, whereas the crustal reservoir is most likely to be extended Australian crust. The data allow the possibility that the proto-Pacific mantle source was isotopically linked to the western Tasmanian crustal source. Comparison of Pb isotope data from the Girilambone district (e.g., Tritton and Avoca Tank deposits) with those from the Cobar district in north central New South Wales indicates a less radiogenic signature, and probably older age, for deposits in the Girilambone district. Hence, a syngenetic volcanic-associated massive sulphide origin for these deposits is preferred over a syn-tectonic origin. The data are also consistent with formation of the Girilambone district in a back-arc basin inboard from the earliest phase of the Macquarie Arc.

  • The coverage of this dataset is over the PortStephens region . The C3 LAS data set contains point data in LAS 1.2 format sourced from a LiDAR ( Light Detection and Ranging ) from an ALS50 ( Airborne Laser Scanner ) sensor . The processed data has been manually edited to achieve LPI classification level 3 whereby the ground class contains minimal non-ground points such as vegetation , water , bridges , temporary features , jetties etc . Purpose: To provide fit-for-purpose elevation data for use in applications related to coastal vulnerability assessment, natural resource management ( especially water and forests) , transportation and urban planning . Additional lineage information: This data has an accuracy of 0.3m ( 95 CI ) vertical and 0.8m ( 95 CI ) horizontal with a minimum point density of one laser pulse per square metre . For more information on the datas accuracy, refer to the lineage provided in the data history .

  • The Macquarie Barwon LiDAR survey provides elevation and photographic data over approximately 17,326 km² along the Macquarie and Barwon Rivers, north-west of Dubbo NSW. The LiDAR was captured between November 2013 and May 2014, at a nominal density of two outgoing laser pulses per square metre. Photography was captured simultaneously and provided as an ortho-rectified mosaic with a resolution of 20cm. The LiDAR was delivered in a full waveform format that retains a higher level of precision and significantly more above ground information than traditional LiDAR. A set of seamless products, including hydro-flattened bare earth terrain surfaces (DEMs), were produced to the ICSM specification. Other derived surfaces include a Digital Surface Model (DSM), Canopy Height Model (CHM) and Foliage Canopy Model (FCM). The outputs of the project are compliant with National ICSM LiDAR Product Specifications and the NEDF.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.00083 degrees (approximately 84m) and shows uranium element concentration of the Wagga Wagga, NSW, 1992 in units of parts per million (or ppm). The data used to produce this grid was acquired in 1992 by the NSW Government, and consisted of 8629 line-kilometres of data at 400m line spacing and 100m terrain clearance.

  • This dataset reflects the external boundaries of all native title determination and compensation applications that are currently recognized and active within the Federal Court process. Applications that are non-active (i.e. withdrawn, dismissed, finalised, rejected or combined) are only included as aspatial records for completeness. This is a national dataset. This dataset depicts the spatial definition of active Claimant and Non-claimant native title determination applications and compensation applications. Where possible these may include internal boundaries or areas excluded. Aspatial attribution includes National Native Title Tribunal number, Federal Court number, application status and the names of both the NNTT Case Manager and Lead Member where assigned to the application. Applications included on the Schedule of Native Title (Federal Court) include all registered and unregistered applications as well as determined applications that are yet to be finalized.

  • This dataset reflects the external boundaries of all native title determination and compensation applications that are currently recognized and active within the Federal Court process. Applications that are non-active (i.e. withdrawn, dismissed, finalised, rejected or combined) are only included as aspatial records for completeness. This is a national dataset with data partitioned by jurisdiction (State), for ease of use. Applications stored for each jurisdiction dataset include applications which overlap into adjoining jurisdictions as well as applications which overlap with these for completeness. This dataset depicts the spatial definition of active Claimant and Non-claimant native title determination applications and compensation applications. Where possible these may include internal boundaries or areas excluded. Aspatial attribution includes National Native Title Tribunal number, Federal Court number, application status and the names of both the NNTT Case Manager and Lead Member where assigned to the application. Applications included on the Schedule of Native Title (Federal Court) include all registered and unregistered applications as well as determined applications that are yet to be finalized.

  • Categories  

    This GSNSW Exploration NSW Area A3 Bancannia Trough uranium grid geodetic is an airborne-derived radiometric uranium window countrate grid for the NSW DMR, Discovery 2000, 1994-95, AREA A3, Bancannia Trough survey. The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of uranium (K), uranium (U) and uranium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSNSW Exploration NSW Area A3 Bancannia Trough uranium grid geodetic has a cell size of 0.00063 degrees (approximately 65m). The data are in units of counts per second (or cps). The data used to produce this grid was acquired in 1995 by the NSW Government, and consisted of 21000 line-kilometres of data at 400m line spacing and 80m terrain clearance.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. These line dataset from the NSW DMR, Discovery 2000, 1994-95, AREA A3, Bancannia Trough survey were acquired in 1995 by the NSW Government, and consisted of 21000 line-kilometres of data at 400m line spacing and 80m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.