marine survey
Type of resources
Keywords
Publication year
Scale
Topics
-
This report provides a description of the activities completed during the Bynoe Harbour Marine Survey, from 3 May and 17 May 2016 on the RV Solander (Survey GA4452/SOL6432). This survey was a collaboration between Geoscience Australia (GA), the Australian Institute of Marine Science (AIMS) and Department of Land Resource Management (Northern Territory Government) and the second of four surveys in the Darwin Harbour Seabed Habitat Mapping Program. This 4 year program (2014-2018) aims to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline information and developing thematic habitat maps that will underpin future marine resource management decisions. The program was made possible through funds provided by the INPEX-led Ichthys LNG Project to Northern Territory Government Department of Land Resource Management, and co-investment from Geoscience Australia and Australian Institute of Marine Science. The specific objectives of the Bynoe Harbour Marine Survey GA4452/SOL6432 were to: 1. Obtain high resolution geophysical (bathymetry) data for the deeper areas of Bynoe Harbour (<5 m), including Port Patterson; and, 2. Characterise substrates (acoustic backscatter properties, sub-bottom profiles, grainsize, sediment chemistry) the deeper areas of Bynoe Harbour (<5 m), including Port Patterson. Data acquired during the survey included: 698 km2 multibeam sonar bathymetry, water column and backscatter; 102 Smith-McIntyre grabs, 104 underwater camera drops, 29 sub-bottom profile lines and 34 sound velocity profiles.
-
A benthic sediment sampling survey (GA0356) to the nearshore areas of outer Darwin Harbour was undertaken in the period from 03 July to 14 September 2016. Partners involved in the survey included Geoscience Australia (GA), the Australian Institute of Marine Science (AIMS) and the Department of Environment and Natural Resources within the Northern Territory Government (NT DENR) (formerly the Department of Land and Resource Management (DLRM)). This survey forms part of a four year (2014-2018) science program aimed at improving knowledge about the marine environments in the regions around Darwin and Bynoe Harbours through the collection and collation of baseline data that will enable the creation of thematic habitat maps to underpin marine resource management decisions. This project is being led by the Northern Territory Government and is supported by the INPEX-led Ichthys LNG Project, in collaboration with - and co-investment from GA and AIMS. The program builds upon an NT Government project (2011-2011) which saw the collection of baseline data (multibeam echosounder data, sediment samples and video transects) from inner Darwin Harbour (Siwabessy et al. 2015). Here we present an account of the field methods and data summaries (location maps and comprehensive metadata) for the collection of 200 seabed sediment samples designated for grain size and inorganic elemental analyses, and organic matter concentration, source and reactivity measures. Metadata is also provided for seagrass observations and hardground occurrences. The seagrass observation data will be incorporated into DENR's seagrass database. The baseline environmental datasets acquired during this survey will be merged with like datasets from three other surveys conducted as part of the overall project to create a set of interpolated maps of abiotic parameters with full coverage for the region. Some of the maps will be integrated into final habitat mapping products. Baseline data from the survey will also be made publically available via the Geoscience Australia website (http://www.ga.gov.au/).
-
No abstract available
-
The Petrel Sub-basin Marine Environmental Survey GA-0335, (SOL5463) was undertaken using the RV Solander during May 2012 as part of the Commonwealth Government's National Low Emission Coal Initiative (NLECI). The survey was undertaken as a collaboration between the Australian Institute of Marine Science (AIMS) and GA. The purpose was to acquire geophysical and biophysical data on shallow (less then 100m water depth) seabed environments within two targeted areas in the Petrel Sub-basin to support investigation for CO2 storage potential in these areas. This 10 sample data-set comprises sediment oxygen demand data (expressed as % saturation per gram dry weight) from surface seabed sediments (~0-2 cm) in the Timor Sea.
-
The Petrel Sub-basin Marine Environmental Survey GA-0335, (SOL5463) was undertaken by the RV Solander during May 2012 as part of the Commonwealth Government's National Low Emission Coal Initiative (NLECI). The survey was undertaken as a collaboration between the Australian Institute of Marine Science (AIMS) and GA. The purpose was to acquire geophysical and biophysical data on shallow (less then 100m water depth) seabed environments within two targeted areas in the Petrel Sub-basin to support investigation for CO2 storage potential in these areas. This dataset comprises TCO2 pools (0-2cm) and fluxes calculated from bottle incubation experiments (24 hours).
-
In March and April, 2012, Geoscience Australia undertook a seabed characterisation survey, aimed at supporting the assessment of CO2 storage potential of the Vlaming Sub-basin, Western Australia. The survey, undertaken as part of the National CO2 Infrastructure Plan program was targeted to provide an understanding of the link between the deep geological features of the area and the seabed, and connectivity between them as possible evidence for seal integrity. Data was acquired in two sections of the Rottnest Shelf lying above the regional seal - the South Perth Shale - and the underlying potentially CO2-suitable reservoir, the Gage Sandstone. Seabed samples were taken from 43 stations, and included 89 seabed grab samples. A total of 653 km2 of multibeam and backscatter data was obtained. Chirper shallow sub-bottom profile data was acquired concurrently. 6.65 km2 of side-scan sonar imagery was also obtained. The two surveyed areas, (Area 1 and Area 2), are set within a shallow sediment starved shelf setting. Area 2, situated to the southwest of Rottnest Island, is characterised by coralline red algal (rhodolith) beds, with ridges and mounds having significant rhodolith accumulations. The geomorphic expression of structural discontinuities outcropping at the seabed is evident by the presence of linear fault-like structures notable in Area 1, and north-south trending lineaments in Area 2. North-south trending structural lineaments on the outer section of Area 2 have in places, mounds standing 4-5 m above the seafloor in water depths of 80-85 m. Although there are apparent spatial correlations between seabed geomorphology and the structural geology of the basin, the precise relationship between ridges and mounds that are overlain by rhodolith accumulations, fluid seepage, and Vlaming Sub-basin geology is uncertain, and requires further work to elucidate any links.
-
The Bight Basin Sampling and Seepage Survey (SS01/2007), was undertaken in February-March 2007 as the final data acquisition activity of the Commonwealth Government's New Petroleum Program (2003-2007). The survey was designed to address two key petroleum systems issues in the Bight Basin. In order to assist in our understanding of the distribution of source rocks in the basin, the survey aimed to sample the distal facies of potential source intervals of Albian-Santonian age at locations on the seaward edges of the Ceduna and Eyre Terraces. Secondly, the survey aimed to investigate the presence of active petroleum systems by sampling and obtaining geophysical data at potential natural hydrocarbon seepage sites across the Ceduna Sub-basin. Nine areas of interest were identified for surveying in the eastern Bight Basin, including areas where the targeted Albian-Santonian section outcrops on the seafloor, and areas where there was seismic and other geophysical and remotely sensed evidence of possible hydrocarbon seepage. The survey, took place from 24 February-17 March 2007 using the Marine National Facility vessel R/V Southern Surveyor. The survey successfully sampled all nine targeted areas and collected 37 dredge hauls, 69 gravity cores and 15 grab samples, as well as 4600 km of swath data, and 2400 km of sub-bottom profile data. The Bight Basin Sampling and Seepage Survey was very successful in addressing the most critical of its objectives, recovering samples from the exposed up-dip northwestern edge of the Ceduna Sub-basin that provide the first evidence for a world-class marine Cretaceous source rock in the Bight Basin.
-
The frontier Capel and Faust Basins, 800 km east of Brisbane in water depths of 1000-3000 m, are generating interest in light of Australia's energy security concerns. The basins are a focus of Geoscience Australia's efforts to provide pre-competitive knowledge of offshore frontier regions to the petroleum exploration industry. A variety of new geophysical data has recently been obtained over these remote basins. A regional-scale residual gravity map, prepared from satellite-altimetry data and upward continuation, highlighted a series of N-S elongate gravity lows interpreted to represent basin depocentres. A 2D reflection seismic survey was designed on the basis of this gravity-inferred basin distribution. The survey was conducted in late 2006/early 2007 and provided 106-fold data to 12 s TWT on 5920 km of dip and strike lines. Sonobuoy data were recorded for velocity information. Additional ship-borne gravity and magnetic data were collected during the seismic survey and on a subsequent swath bathymetry and geological sampling survey in late 2007. The latter survey focussed on the north-western part of the seismic grid where depocentres appear to be best developed. The complex of small depocentres means that 2D potential field modelling is not appropriate, but the potential field data are being used as constraints to interpolate horizon and basement picks between the 20-50 km spaced seismic lines. Ultimately, these efforts will lead to a complete 3D picture of the upper crust that will assist assessments of the prospectivity of these remote but tantalising basins.
-
The Petrel Sub-basin Marine Survey (GA0335/SOL5463) was undertaken in May 2012 by Geoscience Australia in collaboration with the Australian Institute of Marine Science (AIMS), as part of the Australian Government's National Low Emission Coal Initiative (NLECI). Its purpose was to acquire pre-competitive geophysical and biophysical data on shallow seabed environments within two targeted areas to support assessment of CO2 storage potential. The geophysical acquisition consisted of multibeam sonar mapping of sea floor morphology and multi-channel sub bottom profiling of the shallow sub surface geology. The aim of sub bottom profiling was to investigate regional seal breaches and potential fluid pathways by providing high resolution images connecting the sea floor map to regional seismic reflection data acquired concurrently in the area. The sub bottom profiler data were acquired aboard the AIMS research vessel (RV) Solander along 51 lines, totalling 654 line km in the Petrel Sub-basin of the Bonaparte Basin. Acquisition employed a Squid 2000 sparker as the source and a 24 channel Microeel streamer for the receivers. Group interval was 3.125 m and shot interval 6.25 m, resulting in 6 fold data. Record length was 500 ms with a sample interval of 0.25 ms. Some problems in acquisition needed to be addressed in processing. Firstly, sea conditions were far from smooth for most of the voyage. Obvious relative motion occurred between the source and the streamer, and along the streamer itself, due to the ocean swell. In some cases, acquisition commenced while the vessel was still turning onto the line and the streamer was not straight in line behind the stern. Finally, malfunction of the sparker on some half dozen lines resulted in gaps in the coverage, which could not be filled in later, due to bad weather reducing the time for the survey. Multichannel seismic reflection processing was able to compensate for some of the limitations of sparker acquisition. Mutes and filters were necessary to remove the worst of the noise, including leaked timing pulse and swell noise. Surface related multiple elimination (SRME) successfully attenuated the water bottom and later multiples. Non surface consistent trim statics were able to correct for the relative motion of the sparker and the streamer, thereby allowing alignment of reflections prior to stack, which improved the signal to noise. Minimum entropy deconvolution was a critical step in both suppressing ghosting and enhancing latent high frequencies in the data, thus improving the resolution. Migration was necessary to correctly image small channels by collapsing diffractions. Finally tidal static corrections were essential to remove mis-ties in high frequency data. The processing stream has been well documented, along with scripts employed to handle the large amount of data efficiently and consistently. This record is a manual for a much more rigorous way of processing multi-channel sparker data, and details a work flow that can be implemented within Geoscience Australia and used for future surveys. The final migrated seismic data proved to be very high resolution, allowing delineation of multiple episodes of channelling in the top 100 m of sediment. Comparison of the sub bottom profiles with older regional seismic reflection data showed just how much more detail is available in the region critical for mapping deeper faults and fluid pathways to features on the sea floor. Acquisition and processing of the sub bottom profiler data surpassed the survey expectations.
-
Geoscience Australia marine reconnaissance survey TAN0713 to the Lord Howe Rise offshore eastern Australia was completed as part of the Federal Government's Offshore Energy Security Program between 7 October and 22 November 2007 using the New Zealand Government's research vessel Tangaroa. The survey was designed to sample key, deep-sea environments on the east Australian margin (a relatively poorly-studied shelf region in terms of sedimentology and benthic habitats) to better define the Capel and Faust basins, which are two major sedimentary basins beneath the Lord Howe Rise. Samples recovered on the survey contribute to a better understanding of the geology of the basins and assist with an appraisal of their petroleum potential. They also add to the inventory of baseline data on deep-sea sediments in Australia. The principal scientific objectives of the survey were to: (1) characterise the physical properties of the seabed associated with the Capel and Faust basins and Gifford Guyot; (2) investigate the geological history of the Capel and Faust basins from a geophysical and geological perspective; and (3) characterise the abiotic and biotic relationships on an offshore submerged plateau, a seamount, and locations where fluid escape features were evident. This dataset comprises inorganic element concentrations in seabed sediments. Some relevant publications which pertain to these datasets include: 1. Heap, A.D., Hughes, M., Anderson, T., Nichol, S., Hashimoto, T., Daniell, J., Przeslawski, R., Payne, D., Radke, L., and Shipboard Party, (2009). Seabed Environments and Subsurface Geology of the Capel and Faust basins and Gifford Guyot, Eastern Australia - post survey report. Geoscience Australia, Record 2009/22, 166pp. 2. Radke, L.C. Heap, A.D., Douglas, G., Nichol, S., Trafford, J., Li, J., and Przeslawski, R. 2011. A geochemical characterization of deep-sea floor sediments of the northern Lord Howe Rise. Deep Sea Research II 58: 909-921