From 1 - 10 / 486
  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. These line dataset from the Murrindal, Vic, 1996 VIMP Survey (GSV3060) survey were acquired in 1995 by the VIC Government, and consisted of 15589 line-kilometres of data at 200m line spacing and 80m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. These line dataset from the East Gippsland (Offshore), VIC, 1956 (GSV0009) survey were acquired in 1956 by the VIC Government, and consisted of 14548 line-kilometres of data at 1600m line spacing and 300m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. These line dataset from the Horsham-Hamilton, VIC, 1974 (GSV0118) survey were acquired in 1974 by the VIC Government, and consisted of 3047 line-kilometres of data at 10000m line spacing and 460m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. These line dataset from the Bairnsdale, VIC, 1975/76 survey were acquired in 1975 by the VIC Government, and consisted of 9638 line-kilometres of data at 1500m line spacing and 1680m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.

  • The Stavely Project is a collaboration between Geoscience Australia and the Geological Survey of Victoria. During 2014 fourteen pre-competitive stratigraphic drill holes were completed in the prospective Stavely region in western Victoria in order to better understand subsurface geology and its potential for a variety of mineral systems. The Stavely region hosts several belts of poorly-exposed Cambrian volcanic and intrusive rocks, visible largely only in aeromagnetic data, which have similarities to those found in modern subduction-related tectonic settings. Mineralisation associated with porphyry Cu-Au and volcanic-hosted massive sulphide mineral systems is known where these rocks are exposed around Mount Stavely and the Black Range. However, despite a history of mineral exploration dating back to the late 1960s, significant economic deposits are yet to be discovered, and the Stavely region remains a greenfields terrane. Given the geological setting and known mineral potential, opportunity exists for the discovery of large mineral systems beneath extensive, but relatively thin, younger cover. The Stavely Project aims to provide the framework for discovery in the Stavely region primarily through the acquisition and delivery of pre-competitive geoscientific data. This includes the completion of pre-competitive stratigraphic drill holes in order to test regional geological interpretations and recover material for detailed lithological, petrophysical, geochemical and geochronological analysis. The results will assist in understanding the mineral systems potential of the Stavely region under cover. This report describes the scanning methods and procedures used to measure rock properties of the diamond core from 13 of the 14 Stavely Project stratigraphic drill holes. A brief summary of core quality, generalised lithologies and petrophysical responses, together with associated metadata for each scanned drill hole is presented, along with visual logs of the petrophysical data. Processed petrophysical data is provided for download with this report. Analytical methods for each of the petrophysical properties measured are also documented.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. These line dataset from the Bendigo, Wangaratta, Tallangatta, VIC NSW, 1972 (GSV0090) survey were acquired in 1972 by the VIC Government, and consisted of 35480 line-kilometres of data at 1500m line spacing and 150m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Bendigo, Wangaratta, Tallangatta, VIC NSW, 1972 (GSV0090) (P397), radiometric line data were acquired in 1972 by the VIC Government, and consisted of 35480 line-kilometres of data at 1500m line spacing and 150m terrain clearance.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. These line dataset from the Goulburn River Valley Ground Water Project, NSW VIC, 1973 (GSV0375) survey were acquired in 1973 by the NSW, VIC Government, and consisted of 1106 line-kilometres of data at 1500m line spacing and 150m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.

  • Categories  

    Gravity data measures small changes in gravity due to changes in the density of rocks beneath the Earth's surface. The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Portland-Colac 1:250000 Gravity (P199530) contains a total of 868 point data values acquired at a spacing between 200 and 1200 metres. The data is located in VIC and were acquired in 1995, under project No. 199530 for Department of Minerals and Energy (Victoria).

  • Categories  

    Gravity data measures small changes in gravity due to changes in the density of rocks beneath the Earth's surface. The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This 532 Mildura Gravity Northwest Initiative (P199433) contains a total of 320 point data values acquired at a spacing of 1500 metres. The data is located in VIC and were acquired in 1994, under project No. 199433 for Geological Survey of Victoria (GSV).