From 1 - 10 / 1120
  • Categories  

    Digital Elevation data record the terrain height variations from the processed point- or line-located data recorded during a geophysical survey. This GSQ Southern Bowen Basin Qld elevation grid geodetic is elevation data for the Southern Bowen Basin, Qld, 2004. This survey was acquired under the project No. 1072 for the geological survey of QLD. The grid has a cell size of 0.001 degrees (approximately 106m). This grid contains the ground elevation relative to the geoid for the Southern Bowen Basin, Qld, 2004. It represents the vertical distance from a location on the Earth's surface to the geoid. The data are given in units of meters. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The terrestrial dose rate grid is derived as a linear combination of the filtered K, U and Th grids. A low pass filter is applied to this grid to generate the filtered terrestrial dose rate grid. This GSQ Southern Bowen Basin Qld dose rate grid geodetic has a cell size of 0.001 degrees (approximately 106m) and shows the terrestrial dose rate of the Southern Bowen Basin, Qld, 2004. The data used to produce this grid was acquired in 2004 by the QLD Government, and consisted of 74554 line-kilometres of data at 400m line spacing and 80m terrain clearance.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric potassium grid has a cell size of 0.001 degrees (approximately 106m) and shows potassium element concentration of the Southern Bowen Basin, Qld, 2004 in units of percent (or %). The data used to produce this grid was acquired in 2004 by the QLD Government, and consisted of 74554 line-kilometres of data at 400m line spacing and 80m terrain clearance.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric thorium grid has a cell size of 0.001 degrees (approximately 106m) and shows thorium element concentration of the Southern Bowen Basin, Qld, 2004 in units of parts per million (or ppm). The data used to produce this grid was acquired in 2004 by the QLD Government, and consisted of 74554 line-kilometres of data at 400m line spacing and 80m terrain clearance.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSQ Southern Bowen Basin Qld magnetic vd1 grid geodetic is a first vertical derivative of the Total Magnetic Intensity grid for the Southern Bowen Basin, Qld, 2004. This grid has a cell size of 0.001 degrees (approximately 106m). The grid has units of nanoTesla per km (or nT/km). The data used to produce the TMI grid was acquired in 2004 by the QLD Government, and consisted of 74554 line-kilometres of data at 400m line spacing and 80m terrain clearance. A Fast Fourier Transform (FFT) process was applied to the original grid to calculate the first vertical derivative grid.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSQ Southern Bowen Basin Qld magnetic vd2 grid geodetic is a Second vertical derivative of the Total Magnetic Intensity grid for the Southern Bowen Basin, Qld, 2004. This grid has a cell size of 0.001 degrees (approximately 106m). The data used to produce the TMI grid was acquired in 2004 by the QLD Government, and consisted of 74554 line-kilometres of data at 400m line spacing and 80m terrain clearance. A Fast Fourier Transform (FFT) process was applied to the original TMI grid to calculate the Second vertical derivative grid.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSQ Southern Bowen Basin Qld magnetic grid geodetic has a cell size of 0.001 degrees (approximately 106m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 2004 by the QLD Government, and consisted of 74554 line-kilometres of data at 400m line spacing and 80m terrain clearance.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. . This GSQ Southern Bowen Basin Qld magnetic rtp vd1 grid geodetic is the first vertical derivative of the TMI RTP grid of the Southern Bowen Basin, Qld, 2004 survey. This grid has a cell size of 0.001 degrees (approximately 106m) , and given in units of nT per metre (nT/m). The data used to produce the TMI grid was acquired in 2004 by the QLD Government, and consisted of 74554 line-kilometres of data at 400m line spacing and 80m terrain clearance. The data has had a variable reduction to the pole applied to centre the magnetic anomaly over the magnetised body. The VRTP processing followed a differential reduction to pole calculation up to 5th order polynomial. Magnetic inclination and declination were derived from the IGRF-11 geomagnetic reference model using a data representative date and elevation representative of the survey. A first vertical derivative was calculated by applying a fast Fourier transform (FFT) process to the TMI RTP grid of the Southern Bowen Basin, Qld, 2004 survey to produce this grid. This grid was calculated using an algorithm from the INTREPID Geophysics software package. This grid shows the magnetic response of subsurface features with contrasting magnetic susceptibilities. The grid can also be used to locate structural features such as dykes.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.001 degrees (approximately 106m) and shows uranium element concentration of the Southern Bowen Basin, Qld, 2004 in units of parts per million (or ppm). The data used to produce this grid was acquired in 2004 by the QLD Government, and consisted of 74554 line-kilometres of data at 400m line spacing and 80m terrain clearance.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. These line dataset from the Southern Bowen Basin, Qld, 2004 survey were acquired in 2004 by the QLD Government, and consisted of 74554 line-kilometres of data at 400m line spacing and 80m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.