From 1 - 10 / 24
  • <p>The dataset indicates the seasonal primary productivity hotspots of ocean surface waters. They are derived from MODIS (aqua) images using NASA's SeaDAS image processing software. The monthly chlorophyll a images between July 2002 and August 2014 are used to identify the primary productivity hotspots of the four austral seasons: winter (June, July, and August), spring (September, October and November), summer (December, January and February) and autumn (March, April and May). The extent of the dataset covers the entire Australian EEZ and surrounding waters (including the southern ocean). The value (between 0 and 1.0) of the dataset represents the likelihood of the location being a primary productivity hotspot. <p>This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.

  • <p>This dataset provides the spatially continuous data of seabed gravel (sediment fraction >2000 µm), mud (sediment fraction < 63 µm) and sand content (sediment fraction 63-2000 µm) expressed as a weight percentage ranging from 0 to 100%, presented in 10 m resolution raster grids format and ascii text file.</p> <p>The dataset covers the eight areas in the Timor Sea region in the Australian continental EEZ.</p> <p>This dataset supersedes previous predictions of sediment gravel, mud and sand content for the basin with demonstrated improvements in accuracy. Accuracy of predictions varies with sediment types, with a VEcv = 71% for mud, VEcv = 72% sand and VEcv = 42% for gravel. Artefacts occur in this dataset as a result of noises associated predictive variables (e.g., horizontal and vertical lines resulted from predictive variables derived from backscatter data are the most apparent ones). To obtain the most accurate interpretation of sediment distribution in these areas, it is recommended that noises with backscatter data should be reduced and predictions updated.</p> <p>This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.

  • <p>Australia has established a network of 58 marine parks within Commonwealth waters covering a total of 3.3 million square kilometres, or 40 per cent of our exclusive economic zone (excluding Australian Antarctic Territory). These parks span a range of settings, from near coastal and shelf habitats to abyssal plains. Parks Australia manages the park network through management plans that came into effect for all parks on 1 July 2018. Geoscience Australia is contributing to their management by collating and interpreting existing environmental data, and through the collection of new marine data. “Eco-narrative” documents are being developed for those parks, where sufficient information is available, delivering collations and interpretations of seafloor geomorphology, oceanography and ecology. Many of these interpretations rely on bathymetric grids and their derived products, including those in this data release. <p>Bathymetry grids <p>The bathymetry of the marine parks was created by compiling and processing Geoscience Australia’s bathymetry data holding gridded at the optimum resolution depending of the vessel’s sonar system. <p>The bathymetry of the park is illustrated by a panchromatic geotiff image, developed by combining the bathymetric data with a hillshade image. <p> Morphological Surfaces <p>Geoscience Australia has developed a new marine seafloor classification scheme, which uses the two-part seafloor mapping morphology approach of Dove et al (2016). This new scheme is semi-hierarchical and the first step divides the slope of the seafloor into three Morphological Surface categories (Plain, <2°; Slope, 2-10°; Escarpment, >10°). <p>Dove, D., Bradwell, T., Carter, G., Cotterill, C., Gafeira, J., Green, S., Krabbendam, M., Mellet, C., Stevenson, A., Stewart, H., Westhead, K., Scott, G., Guinan, J., Judge, M. Monteys, X., Elvenes, S., Baeten, N., Dolan, M., Thorsnes, T., Bjarnadóttir, L., Ottesen, D. (2016). Seabed geomorphology: a twopart classification system. British Geological Survey, Open Report OR/16/001. 13 pages. <p>This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.<p><p>This dataset is not to be used for navigational purposes.

  • <p>The dataset measures the long-term seasonal means of the chlorophyll a concentrations of ocean surface waters. They are derived from MODIS (aqua) images using NASA's SeaDAS image processing software. The monthly chlorophyll a images between July 2002 and December 2017 are used to calculate the means of the four austral seasons: winter (June, July, and August), spring (September, October and November), summer (December, January and February) and autumn (March, April and May). The extent of the dataset covers the entire Australian EEZ and surrounding waters (including the southern ocean). The unit of the dataset is mg/m3. <p>This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.

  • A stakeholder workshop for NESP Project D1 ¿Ecosystem understanding to support sustainable use, management and monitoring of marine assets in the North and North-west regions¿ was held at the University of Western Australia, Perth, on 21 April 2016. The objective of the workshop was to identify stakeholder information needs in the North and North-west regions and use these to guide research activities in Project D1. Stakeholders from State and Local Government departments, Industry, Fisheries, Conservation, and Indigenous groups each explained their priorities and issues in the North and North-west region, after which geographic focus, research scope, and data delivery needs were discussed across the group and prioritised through a post-workshop online survey. From a stakeholder perspective, the geographic focus of research should be prioritised towards Commonwealth Marine Reserves (particularly the Kimberly and Gascoyne areas) and areas under the highest pressure. Stakeholders considered that research in Project D1 should be targeted towards using predictive models to characterise and map benthic habitats and demersal fish species. There was positive feedback from Stakeholders regarding the Northwest Atlas as a platform for the communication of research outcomes and as a repository for information relevant to management of the regions, with a number of suggestions made for making information more readily searchable within that framework. Combined outcomes from the D1 Stakeholder Workshop and the earlier D1 Science Workshop will provide direction for future research within Project D1 and contribute to the National Prioritisation workshop with Project D3. <b>Citation:</b> R. Przeslawski,K.J. Miller,J.J. Meeuwig., <i>Ecosystem understanding to support sustainable use, management and monitoring of marine assets in the North and North-west regions - Stakeholder workshop report April 2016</i>, Report in Marine Biodiversity Hub, National Environmental Science Programme (NESP)

  • A scientific workshop for NESP Project D1 ¿Developing a toolbox of predictive models for the monitoring and management of KEFs and CMRs in the North and North-west regions¿ was held at Geoscience Australia 9-10 September 2015. The objectives of the workshop were to discuss future research priorities for the North and North-West regions and to define current knowledge gaps by consolidating existing datasets from AIMS, GA and UWA. Several robust datasets for the North and North-West region were identified which may be used to validate, refine, or extend existing models, particularly in the Oceanic Shoals CMR and along the North-west coastline, including the Kimberley CMR. There are still large regions for which very little scientific information exists, notably the Argo Rowley Terrace CMR and other deep-sea areas. However, when balanced against stakeholder interests and marine management priorities, data-poor CMRs closer to the coast such as the Kimberley and 80 Mile Beach CMRs are the most likely candidates for future research. <b>Citation:</b> Przeslawski, R, Miller, KJ, Nichol, SL, Bouchet, PJ, Huang, Z, Kool, JT, Radford, B, Thums, M., 2015, <i>Developing a toolbox of predictive models for the monitoring and management of KEFs and CMRs in the North and North-west regions - Scientific Workshop Report</i>, Report in Marine Biodiversity Hub, National Environmental Science Programme (NESP)

  • <p>Flythrough movie of Bremer Commonwealth Marine Reserve, southwest Western Australia showing bathymetry of Bremer Canyon, Hood Canyon, Henry Canyon and Knob canyon. <p>This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.

  • <p>Flythrough movie of Gifford Marine Park, which is located 700 km east of Brisbane, Australia. The park is situated about halfway along the Lord Howe Rise seamount chain on the western flank of the Lord Howe Rise. Seamounts along this chain formed from Miocene volcanism via a migrating magma source (“hotspot”) after the opening of the Tasman Sea. Two large, flat-topped volcanic seamounts dominate the park. Their gently sloping summits have accumulated veneers of sediment, which in places have formed fields of bedforms. Steep cliffs, debris and large mass movement scars encircle each seamount, and contrast with the lower gradient abyssal plains from which they rise. Spanning over 3 km of ocean depths, the seamounts are likely to serve multiple and important roles as breeding locations, resting areas, navigational landmarks or supplementary feeding grounds for some cetaceans (e.g. humpback whales, sperm whales). They may also act as important aggregation points for other highly migratory pelagic species. The bathymetry shown here was collected on two surveys - the first in 2007 by Geoscience Australia and the second in 2017 by Geoscience Australia in collaboration with the Japan Agency for Marine-Earth Science and Technology. The Gifford Marine Park has also been the focus of a study undertaken by the Marine Biodiversity Hub as part of the National Environmental Science Program. <p>This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.

  • <p>This dataset measures the overall warming rates of the sea surface temperature (SST) in 58 Australian Marine Parks (except the Heard Island and McDonald Islands Marine Park) over the past 15 years (2003 to 2017). They are derived from the monthly MODIS (aqua) SST images. The fields of "slope_y" and "slope_m" represent the annual and monthly SST warming rates, respectively. The units of the warming rates are Celsius degree/per annual and Celsius degree/per month. <p>This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.

  • <p>Bathymetry flythrough of Perth Canyon using data acquired by Schmidt Ocean Institute in 2015 on RV Falkor (University of Western Australia et al.). The flythrough highlights geomorphic features mapped by Geoscience Australia, including landslides, escarpments and bedform fields and biodiversity associated with the canyon (benthic and pelagic). Produced as a science communication product for the Marine Biodiversity Hub (National Environmental Science Program). <p>This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.