Earth Observation
Type of resources
Keywords
Publication year
Distribution Formats
Scale
Topics
-
1. Band ratio: (B6+B9/(B7+B8) Blue is low content, Red is high content (potentially includes: calcite, dolomite, magnesite, chlorite, epidote, amphibole, talc, serpentine) Useful for mapping: (1) "hydrated" ferromagnesian rocks rich in OH-bearing tri-octahedral silicates like actinolite, serpentine, chlorite and talc; (2) carbonate-rich rocks, including shelf (palaeo-reef) and valley carbonates(calcretes, dolocretes and magnecretes); and (3) lithology-overprinting hydrothermal alteration, e.g. "propyllitic alteration" comprising chlorite, amphibole and carbonate. The nature (composition) of the silicate or carbonate mineral can be further assessed using the MgOH composition product.
-
<p>This mangrove canopy cover product provides valuable information about the extent and canopy density of mangroves for each year between 1987 and 2018 for the entire Australian coastline. </p> <p>The canopy cover classes are 20-50% (pale green), 50-80% (mid green), 80-100% (dark green). The product consists of a sequence (one per year) of 25-metre resolution maps that are generated by analysing the Landsat fractional cover developed by the Joint Remote Sensing Research Program (https://doi.org/10.6084/m9.figshare.94250.v1) and the Global Mangrove Watch layers developed by the Japanese Aerospace Exploration Agency (https://doi.org/10.1071/MF13177). </p> <p>This product can be cited as Lymburner, L., Bunting, P., Lucas, R., Scarth, P., Alam, I., Phillips, C., Ticehurst, C. and Held, A. (2018). Mapping the multi-decadal mangrove dynamics of the Australian coastline. See https://www.sciencedirect.com/science/article/pii/S0034425719301890. </p>
-
This collection contains raw and ancillary information used to generate Geoscience Australia data products.
-
This collection contains processing environments for use by external users of the Australian Geoscience Data Cube (AGDC).
-
1. Band ratio: (B10+B12)/B11 Blue is low gypsum content. Red is high gypsum content. Accuracy: Very Low: Strongly complicated by dry vegetation and often inversely correlated with quartz-rich materials. Affected by discontinuous line-striping. Use in combination with FeOH product which is also sensitive to gypsum. Geoscience Applications: Useful for mapping: (1) evaporative environments (e.g. salt lakes) and associated arid aeolian systems (e.g. dunes); (2) acid waters (e.g. from oxidising sulphides) invading carbonate rich materials including around mine environments; and (3) hydrothermal (e.g. volcanic) systems.
-
<div>The recent federal funding of the <em>National Space Mission for Observation</em> is in no small part a recognition of the capability of the Australian EO community and central to this is the ability to mount effective national-scale field validation programs.</div><div><br></div><div>After many delays, Landsat 9 was launched on the 27th September 2021. Before being handed to the USGS for operational use, NASA had oversight of configuring and testing the new platform and navigating it into its final operational orbit. For a brief few days and a handful of overpasses globally, Landsat 9 was scheduled to fly ‘under’ its predecessor Landsat 8. This provided the global EO community a ‘once in a mission lifetime’ opportunity to collect field validation data from both sensors.</div><div><br></div><div>At short notice the USGS were advised on the timing and location of these orbital overpasses. For Australia, this meant that between the 11th and 17th of November we would see a single overpass with 100% sensor overlap and three others that featured only 10% overlap. Geoscience Australia (who have a longstanding partnership with the USGS on satellite Earth observation) put out a call to the Australian EO community for collaborators.</div><div><br></div><div>Despite this compressed timeline, COVID travel restrictions and widespread La Niña induced rain and flooding, teams from CSIRO, Queensland DES, Environment NSW, University of WA, Frontier SI and GA were able to capture high value ground and water validation data in each of the overpasses.</div><div><br></div><div>Going forward, the Australian EO community need to maintain and build on these skills and capabilities such that the community can meet the future demands of not only our existing international EO collaborations but the imminent arrival of Australian orbiting EO sensors. Abstract presented at Advancing Earth Observation Forum 2022 (https://www.eoa.org.au/event-calendar/2021/12/1/advancing-earth-observation-aeo-2021-22-forum)
-
This is the parent datafile of a dataset that comprises a set of 14+ geoscience products made up of mosaiced ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) scenes across Australia. The individual geoscience products are a combination of bands and band ratios to highlight different mineral groups and parameters including: False colour composite CSIRO Landsat TM Regolith Ratios Green vegetation content Ferric oxide content Ferric oxide composition Ferrous iron index Opaque index AlOH group content AlOH group composition Kaolin group index FeOH group content MgOH group content MgOH group composition Ferrous iron content in MgOH/carbonate Surface mineral group distribution (relative abundance and composition)
-
This collection contains satellite imagery or Earth Observations from space created by Geoscience Australia. Among others, the collection includes data from various satellite sensors including Landsat Thematic Mapper and Multi-Spectral Scanner, Terra and Aqua MODIS.
-
The National Spectral Database (NSD) houses data from Australian remote sensing scientists. The database includes spectra covering targets as diverse as mineralogy, soils, plants, water bodies and various land surfaces. Currently the database holds spectral information from multiple locations across the country and as the collection grows in spatial / temporal coverage, the NSD will service continental scale validation requirements of the Earth observation community for satellite-based measurements of surface reflectance. <b>Value:</b> Curated spectral data provides a wealth of knowledge to remote sensing scientists. For other parties interested in calibration and validation (Cal/Val) of surface reflectance products, the Geoscience Australia (GA) Cal/Val dataset provides a useful resource of ground-truth data to compare to reflectance captured by Landsat 8 and Sentinel 2 satellites. The Aquatic Library is a robust collection of Australian datasets from 1994 to present time, primarily of end-member and substratum measurements. The University of Wollongong collection represents immense value in end-member studies, both terrestrial and aquatic. <b>Scope:</b> The NSD covers Australian data including historical datasets as old as 1994. Physical study sites encompass locations around Australia, with spectra captured in every state. <b>Data types:</b> - Spectral data: raw digital numbers (DN), radiance and reflectance. - From spectral bands VIS-NIR, SWIR1 & SWIR2: wavelengths 350nm - 2500nm collected with instruments in the field or lab setting. Contact for further information: NSDB_manager@ga.gov.au
-
This collection contains processing environments and code repositories created by Geoscience Australia used to generate National Earth and Marine Observations products.