Devonian
Type of resources
Keywords
Publication year
Topics
-
<div>As part of the Data Driven Discoveries program, Geoscience Australia and the Geological Survey of Queensland collaborated to re-examine legacy well cuttings for a chemostratigraphic study. The aim was to identify opportunities for resource discovery in the Devonian-aged Adavale Basin in south-central Queensland by conducting a chemostratigraphic study to define regional stratigraphic correlations in a structurally complex basin with limited well penetrations. A total of 1,489 cutting samples were analysed for whole-rock geochemistry, as well as subsets of samples for whole-rock mineralogy and/or carbonate carbon and oxygen isotopes, from a whole-rock sample. The purpose was to establish new chemostratigraphic correlations across the basin independently, using data from 10 wells that sampled the Adavale Basin.</div>
-
<div>A prerequisite to understanding the evolution and resource potential of a basin is to establish a reliable stratigraphic framework that enables the correlation of rock units across multiple depocentres. Establishing a stratigraphic model for the Adavale Basin is challenging due to its structurally complexity, lack of well penetration and its lateral changes in facies. Biostratigraphy appears broad-scale, and despite providing chronostratigraphic control for the Lower Devonian Gumbardo Formation when combined with U/Pb zircon geochronology, the rest of the Devonian succession is hampered by a lack of microfossil assemblages and their poor preservation. The aim of this study is to establish an independent chemostratigraphic correlation across the Adavale Basin using whole rock inorganic geochemistry. Within this study, a total of 1489 cuttings samples from 10 study wells were analysed by Inductively Coupled Plasma – Optical Emission Spectrometry and Inductively Coupled Plasma – Mass Spectrometry for whole rock geochemistry, in order to establish an independent chemostratigraphic zonation scheme. Based on key elemental ratios selected to reflect changes in feldspars, clay minerals and provenance, the Devonian-aged stratigraphy is characterised into four chemostratigraphic mega-sequences that encompass the Gumbardo Formation (Mega-sequence 1); the Eastwood Formation, the Log Creek Formation and the Lissoy Sandstone (Mega-sequence 2); the Bury Limestone and the Boree Salt formations (Mega-sequence 3); and the Etonvale and the Buckabie formations (Mega-sequence 4). These mega-sequences have been further subdivided into a series of chemostratigraphic sequences that can be correlated across the study wells, establishing a regional correlation framework. </div> This Paper was submitted/presented to the 2023 Australian Petroleum Production & Exploration Association (APPEA) Conference 15-18 May, (https://www.appea.com.au/appea-event/appea-conference-and-exhibition-2023/). <b>Journal Citation:</b> Riley David, Pearce Tim, Davidson Morven, Sirantoine Eva, Lewis Chris, Wainman Carmine (2023) Application of elemental chemostratigraphy to refine the stratigraphy of the Adavale Basin, Queensland. <i>The APPEA Journal</i><b> 63</b>, 207-219. https://doi.org/10.1071/AJ22108
-
<div>The Adavale Basin is located approximately 850 km west-northwest of Brisbane and southwest of Longreach in south-central Queensland. The basin system covers approximately 100,000 km2 and represents an Early to Late Devonian (Pragian to Famennian) depositional episode, which was terminated in the Famennian by widespread contractional deformation, regional uplift and erosion. </div><div>Burial and thermal history models were constructed for nine wells using existing open file data to assess the lateral variation in maturity and temperature for potential source rocks in the Adavale Basin, and to provide an estimate of the hydrocarbon generation potential in the region.</div>
-
<div>Lateral variation in maturity of potential Devonian source rocks in the Adavale Basin have been investigated using nine 1D burial thermal and petroleum generation history models, constructed using existing open file data. These models provide an estimate of the hydrocarbon generation potential of the basin. Total organic carbon (TOC) content and pyrolysis data indicate that the Log Creek Formation, Bury Limestone and shale units of the Buckabie Formation have the most potential as source rocks. The Log Creek Formation and the Bury Limestone are the most likely targets for unconventional gas exploration.</div><div> </div><div>The models were constructed used geological information from well completion reports to assign formation tops and stratigraphic ages to then forward-model the evolution of geophysical parameters. The rock parameters, including facies, temperature, organic geochemistry/petrology, were used to investigate source rock quality, maturity and kerogen type. Suitable boundary conditions were assigned for paleo-heat flow, paleo-surface temperature and paleo-water depth. The resulting models were calibrated using bottom hole temperature and measured vitrinite reflectance data.</div><div> </div><div>The results correspond relatively well with published heat flow predictions, however a few wells show possible localised heat effects that differ from the overall basin average. The models indicate full maturation of the Devonian source rocks with generation occurring during the Carboniferous and again during the Late Cretaceous. Any potential accumulations may be trapped in Devonian sandstone, limestone and mudstone units, as well as overlying younger sediments of the Mesozoic Eromanga Basin. Accumulations could be trapped by localised deposits of the Cooladdi Dolomite and other marine, terrestrial clastic and evaporite units around the basin. Migration of the expelled hydrocarbons may be restricted by overlying regional seals, such as the Wallumbilla Formation of the Eromanga Basin. Unconventional hydrocarbons are a likely target for the Adavale Basin with potential either for tight or shale gas in favourable areas from the Log Creek Formation and Bury Limestone.</div> This Abstract was submitted/presented to the 2023 Australian Exploration Geoscience Conference 13-18 Mar (https://2023.aegc.com.au/)
-
<div>The Australian Government's Data Driven Discoveries program, in collaboration with the Geological Survey of Queensland, has collected 1715 km of deep crustal seismic data across the Adavale Basin in South-Central Queensland. The L215 Adavale Basin Deep Crustal Seismic Survey was conducted between April and July 2023. The survey acquired 7 regional seismic lines, including 23GA-A1 (550 km), 23GA-A2 (196 km), 23GA-A3 (262 km), 23GA-A4 (94 km), 23GA-A5 (239 km), 23GA-A6 (161 km), and 23GA-A7 (213 km) across the basin. The acquisition of these lines occurred both during the day and night near the towns of Adavale, Charleville, Augathella, Blackall, westward towards Windorah, and north beyond Jericho.</div><div><br></div><div>The Adavale Basin Deep Crustal Seismic Survey complements previous work completed under the Data Driven Discoveries Program, including the Adavale Basin 2D Reprocessed Seismic Data Package (eCat No. 149018) and the newly defined chemostratigraphic framework for the basin (Riley et al., 2023, eCat No. 147773). The survey will deliver a significant uplift in regional shallow and deep crustal seismic information for the Adavale Basin, providing a modern, high-fold dataset that will enhance understanding of the basin's stratigraphy, hydrogeology, resource potential, and underground salt storage opportunities.</div><div><br></div><div><strong>The raw shot gather data acquired during the survey are now available from Geoscience Australia. To request this data, please email clientservices@ga.gov.au and include the reference 'eCat#149289' in your message.</strong></div>
-
<p>A geochemical study was conducted to establish oil-oil correlations and evaluate potential source rocks within the latest Devonian–earliest Carboniferous succession of the onshore Canning Basin, Western Australia. Aromatic hydrocarbons, together with the routinely used saturated biomarker ratios and stable carbon isotopes, demonstrate that the recently discovered Ungani oilfield located on the southern margin of the Fitzroy Trough are similar, but not identical, to the early Carboniferous Larapintine 4 (L4) oil family present to the north of the Fitzroy Trough on the Lennard Shelf. The L4 oil family has been correlated to a lower Carboniferous (Tournaisian) source rock core sample from the Laurel Formation at Blackstone-1 although its bulk geochemical properties signify that it could generate substantially more gas than liquid hydrocarbons. <p>The Ungani oils can be distinguished from the L4 oils by their higher concentrations of paleorenieratane and isorenieratane, coupled with more depleted δ<sup>13</sup>C values for n-alkanes, pristane and phytane compared with other components. Hopane isomerisation ratios show distinct grouping of the two oil families that reflect both source and maturity variations. The oil from Wattle-1 ST1 on the Lennard Shelf also has an unusual composition, exhibiting some molecular and isotopic features similar to both the L4 and Ungani oils. Source rocks for the Ungani and Wattle-1 ST1 oils are unknown since their geochemical signature does not match that of the Tournaisian Laurel Formation or the Middle−Upper (Givetian–Frasnian) Devonian Gogo Formation which sourced the Devonian-reservoired Larapintine 3 oils at Blina and Janpam North-1. It is postulated that such potential oil-prone source rocks could occur within the Famennian–Tournaisian succession. <b>Citation:</b> Gemma Spaak, Dianne S. Edwards, Clinton B. Foster, Andrew Murray, Neil Sherwood, Kliti Grice, Geochemical characteristics of early Carboniferous petroleum systems in Western Australia,<i> Marine and Petroleum Geology</i>, Volume 113, 2020, 104073, ISSN 0264-8172. https://doi.org/10.1016/j.marpetgeo.2019.104073
-
Geoscience Australia is leading a regional evaluation of potential mineral, energy and groundwater resources through the Exploring for the Future (EFTF) program. This stratigraphic assessment is part of the Onshore Basin Inventories project, and was undertaken to understand Devonian-aged depositional systems and stratigraphy in Queensland’s Adavale Basin. Such data are fundamental for any exploration activities. Maximising the use of existing well data can lead to valuable insights into the regional prospectivity of sedimentary basins. Data from 53 Adavale Basin wells have been used to evaluate subsurface stratigraphy, depositional environments and hydrocarbon shows across the basin. Stratigraphic data from 26 representative wells, where the well intersected at least three Devonian stratigraphic units, are used to generate chronostratigraphic time-space charts and two-dimensional well correlations within, and between, different (northern, north central, central, west central, east central and southern) parts of the basin. The primary objectives of the study are: • stratigraphic gap analysis to identify geological uncertainties and data deficiencies in the areas of interest, • integrate the well data with Geoscience Australia’s databases (i.e., Australian Stratigraphic Units, Time Scale, Geochronology, STRATDAT, RESFACS),the Geological Survey of Queensland’s Datasets and publicly available (published and unpublished) research data and information, • determine the lithostratigraphic unit tops, log and lithology characterisations, depositional facies, boundary criteria, spatial and temporal distribution and regional correlations, • integrate key biostratigraphic zones and markers with geochronological absolute age dates to generate a chronostratigraphic Time-Space Diagram of the basin. This work improves the understanding of the chronostratigraphic relationships across the Adavale Basin. The age of the sedimentary successions of the basin have been refined using geochronology, biostratigraphy and lithostratigraphic correlation. The chronostratigraphic and biozonation chart of the Adavale Basin has been updated and the stratigraphic, biostratigraphic and hydrocarbon shows datasets will be available for viewing and download via the Geoscience Australia Portal (https://portal.ga.gov.au/restore/15808dee-efcd-428e-ba5b-59b0106a83e3).