Depth
Type of resources
Keywords
Publication year
Service types
Topics
-
This service provides Estimates of Geological and Geophysical Surfaces (EGGS). The data comes from cover thickness models based on magnetic, airborne electromagnetic and borehole measurements of the depth of stratigraphic and chronostratigraphic surfaces and boundaries.
-
<div>This data package contains interpretations of airborne electromagnetic (AEM) conductivity sections in the Exploring for the Future (EFTF) program’s Eastern Resources Corridor (ERC) study area, in south eastern Australia. Conductivity sections from 3 AEM surveys were interpreted to provide a continuous interpretation across the study area – the EFTF AusAEM ERC (Ley-Cooper, 2021), the Frome Embayment TEMPEST (Costelloe et al., 2012) and the MinEx CRC Mundi (Brodie, 2021) AEM surveys. Selected lines from the Frome Embayment TEMPEST and MinEx CRC Mundi surveys were chosen for interpretation to align with the 20 km line-spaced EFTF AusAEM ERC survey (Figure 1).</div><div>The aim of this study was to interpret the AEM conductivity sections to develop a regional understanding of the near-surface stratigraphy and structural architecture. To ensure that the interpretations took into account the local geological features, the AEM conductivity sections were integrated and interpreted with other geological and geophysical datasets, such as boreholes, potential fields, surface and basement geology maps, and seismic interpretations. This approach provides a near-surface fundamental regional geological framework to support more detailed investigations. </div><div>This study interpreted between the ground surface and 500 m depth along almost 30,000 line kilometres of nominally 20 km line-spaced AEM conductivity sections, across an area of approximately 550,000 km2. These interpretations delineate the geo-electrical features that correspond to major chronostratigraphic boundaries, and capture detailed stratigraphic information associated with these boundaries. These interpretations produced approximately 170,000 depth estimate points or approximately 9,100 3D line segments, each attributed with high-quality geometric, stratigraphic, and ancillary data. The depth estimate points are formatted for compliance with Geoscience Australia’s (GA) Estimates of Geological and Geophysical Surfaces (EGGS) database, the national repository for standardised depth estimate points. </div><div>Results from these interpretations provided support to stratigraphic drillhole targeting, as part of the Delamerian Margins NSW National Drilling Initiative campaign, a collaboration between GA’s EFTF program, the MinEx CRC National Drilling Initiative and the Geological Survey of New South Wales. The interpretations have applications in a wide range of disciplines, such as mineral, energy and groundwater resource exploration, environmental management, subsurface mapping, tectonic evolution studies, and cover thickness, prospectivity, and economic modelling. It is anticipated that these interpretations will benefit government, industry and academia with interest in the geology of the ERC region.</div>
-
To meet the increasing demand for natural resources globally, industry faces the challenge of exploring new frontier areas that lie deeper undercover. Here, we present an approach to, and initial results of, modelling the depth of four key chronostratigraphic packages that obscure or host mineral, energy and groundwater resources. Our models are underpinned by the compilation and integration of ~200 000 estimates of the depth of these interfaces. Estimates are derived from interpretations of newly acquired airborne electromagnetic and seismic reflection data, along with boreholes, surface and solid geology, and depth to magnetic source investigations. Our curated estimates are stored in a consistent subsurface data repository. We use interpolation and machine learning algorithms to predict the distribution of these four packages away from the control points. Specifically, we focus on modelling the distribution of the base of Cenozoic-, Mesozoic-, Paleozoic- and Neoproterozoic-age stratigraphic units across an area of ~1.5 million km2 spanning the Queensland and Northern Territory border. Our repeatable and updatable approach to mapping these surfaces, together with the underlying datasets and resulting models, provides a semi-national geometric framework for resource assessment and exploration. <b>Citation:</b> Bonnardot, M.-A., Wilford, J., Rollet, N., Moushall, B., Czarnota, K., Wong, S.C.T. and Nicoll, M.G., 2020. Mapping the cover in northern Australia: towards a unified national 3D geological model. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.
-
As part of the first phase of the Exploring for the Future (EFTF) program, depth estimates have been compiled across the North Australian Craton (NAC) in the Estimates of Geological and Geophysical Surfaces (EGGS) database. These depth estimates are ultimately intended to be used to build national-scale models of Australia’s geological cover sequences. EGGS contains depth estimate points of chronostratigraphic era boundaries derived from multiple geological and geophysical datasets. This includes points from the interpretation of airborne electromagnetic (AEM) and magnetotelluric (MT) datasets, as well as from magnetic modelling. Surface and solid geology maps, and formation tops data for groundwater, petroleum and mineral boreholes are linked with the Australian Stratigraphic Units Database (ASUD) to provide chronostratigraphic context for the depth estimates. Following on from work completed across the NAC, the structure of the EGGS database has been re-designed to better enable users to extract additional key information required to build 3D models, and abide by the FAIR (Findable, Accessible, Interoperable, Reusable) data principles. For example, EGGS now identifies points associated with a significant (era-scale) chronostratigraphic unconformity – such as where the Cenozoic overlies Paleozoic or older rocks – enabling better interpolation between points in gridded cover surfaces. We are extending our EGGS coverage to the south, along the Eastern Resources Corridor, including over the Cooper Basin. Newly added data from this area includes magnetic depth estimates from targeted magnetic inversion modelling, interpretation of the AusAEM Eastern Resources Corridor survey data, and compilation of well formation tops across South Australia, Victoria and New South Wales. These data will be used to generate a 3D depth to cover model over the Eastern Resources Corridor and contribute towards building a national-scale geological architecture model. This Abstract was submitted/presented to the 2022 Central Australian Basins Symposium IV 29-30 August (https://agentur.eventsair.com/cabsiv/).
-
Geognostics OZ SEEBASE depth‐to‐economic basement model of Australia and ancillary datasets. In this update, basement is defined as the top of igneous or metamorphic crust at the base of undeformed sediments, regardless of age. Note that in deeper parts of some basins, such as the greater McArthur Basin, the deepest section may be metasedimentary. Data provided by Geognostics, 2021. OZ SEEBASE® 2021 (Version 1, May 2021). Geognostics Australia Pty Ltd, https://www.geognostics.com/oz‐seebase‐2021. Web Map Service layers include: - Depth to Basement Image - Depth to Basement Grid - Sediment Thickness Grid - Derivative OZ SEEBASE Sediment Thickness Grid - Basement Thickness Grid Disclaimer: The conclusions and recommendations expressed in this Geognostics digital release represent the opinions of the authors based on the data available to them. No liability is accepted for the total accuracy of this report or related datasets, nor any commercial decisions or actions made resulting from this report.
-
<div>The interpretation of AusAEM airborne electromagnetic (AEM) survey conductivity sections in the Canning Basin region delineates the geo-electrical features that correspond to major chronostratigraphic boundaries, and captures detailed stratigraphic information associated with these boundaries. This interpretation forms part of an assessment of the underground hydrogen storage potential of salt features in the Canning Basin region based on integration and interpretation of AEM and other geological and geophysical datasets. A main aim of this work was to interpret the AEM to develop a regional understanding of the near-surface stratigraphy and structural geology. This regional geological framework was complimented by the identification and assessment of possible near-surface salt-related structures, as underground salt bodies have been identified as potential underground hydrogen storage sites. This study interpreted over 20,000 line kilometres of 20 km nominally line-spaced AusAEM conductivity sections, covering an area approximately 450,000 km2 to a depth of approximately 500 m in northwest Western Australia. These conductivity sections were integrated and interpreted with other geological and geophysical datasets, such as boreholes, potential fields, surface and basement geology maps, and seismic interpretations. This interpretation produced approximately 110,000 depth estimate points or 4,000 3D line segments, each attributed with high-quality geometric, stratigraphic, and ancillary data. The depth estimate points are formatted for Geoscience Australia’s Estimates of Geological and Geophysical Surfaces database, the national repository for formatted depth estimate points. Despite these interpretations being collected to support exploration of salt features for hydrogen storage, they are also intended for use in a wide range of other disciplines, such as mineral, energy and groundwater resource exploration, environmental management, subsurface mapping, tectonic evolution studies, and cover thickness, prospectivity, and economic modelling. Therefore, these interpretations will benefit government, industry and academia interested in the geology of the Canning Basin region.</div>
-
<div>This data package provides depth and isochore maps generated in support of the energy resource assessments under the Australia’s Future Energy Resources (AFER) project. Explanatory notes are also included.</div><div><br></div><div>The AFER project is part of Geoscience Australia’s Exploring for the Future (EFTF) Program—an eight year, $225 million Australian Government funded geoscience data and precompetitive information acquisition program to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, Geoscience Australia is building a national picture of Australia’s geology and resource potential. This will help support a strong economy, resilient society and sustainable environment for the benefit of all Australians. The EFTF program is supporting Australia’s transition to a low emissions economy, industry and agriculture sectors, as well as economic opportunities and social benefits for Australia’s regional and remote communities. Further details are available at http://www.ga.gov.au/eftf.</div><div><br></div><div>The depth and isochore maps are products of depth conversion and spatial mapping seismic interpretations by Szczepaniak et al. (2023) and Bradshaw et al. (2023) which interpreted 15 regional surfaces. These surfaces represent the top of play intervals being assessed for their energy resource potential (Figure 1). These seismic datasets were completed by play interval well tops by Bradshaw et al. (in prep), gross depositional environment maps, zero edge maps by Bradshaw et al. (in prep), geological outcrop data as well as additional borehole data from Geoscience Australia’s stratigraphic units database.</div><div><br></div><div>Depth and isochore mapping were undertaken in two to interactive phases; </div><div><br></div><div>1. A Model Framework Construction Phase – In this initial phase, the seismic interpretation was depth converted and then gridded with other regional datasets. </div><div><br></div><div>2. A Model Refinement and QC Phase – This phase focused on refining the model and ensuring quality control. Isochores were generated from the depth maps created in the previous phase. Smoothing and trend modelling techniques were then applied to the isochore to provide additional geological control data in areas with limited information and to remove erroneous gridding artefacts. </div><div><br></div><div>The final depth maps were derived from isochores, constructing surfaces both upward and downward from the CU10_Cadna-owie surface, identified as the most data-constrained surface within the project area. This process, utilizing isochores for depth map generation, honours all the available well and zero edge data while also conforming to the original seismic interpretation.</div><div><br></div><div>This data package includes the following datasets: </div><div><br></div><div>1) Depth maps, grids and point datasets measured in meters below Australian Height Datum (AHD, for 15 regional surfaces (Appendix A). </div><div>2) Isochore maps, grids and point datasets measured in meters, representing 14 surfaces/play internals (Appendix B).</div><div> </div><div>These depth and isochore maps are being used to support the AFER Project’s play-based energy resource assessments in the Pedirka and western Eromanga basins, and will help to support future updates of 3D geological and hydrogeological models for the Great Artesian Basin by Geoscience Australia.</div><div><br></div>
-
Building on newly acquired airborne electromagnetic and seismic reflection data during the Exploring for the Future (EFTF) program, Geoscience Australia (GA) generated a cover model across the Northern Territory and Queensland, in the Tennant Creek – Mount Isa (TISA) area (Figure 1; between 13.5 and 24.5⁰ S of latitude and 131.5 and 145⁰ E of longitude) (Bonnardot et al., 2020). The cover model provides depth estimates to chronostratigraphic layers, including: Base Cenozoic, Base Mesozoic, Base Paleozoic and Base Neoproterozoic. The depth estimates are based on the interpretation, compilation and integration of borehole, solid geology, reflection seismic, and airborne electromagnetic data, as well as depth to magnetic source estimates. These depth estimates in metres below the surface (relative to the Australian Height Datum) are consistently stored as points in the Estimates of Geophysical and Geological Surfaces (EGGS) database (Matthews et al., 2020). The data points compiled in this data package were extracted from the EGGS database. Preferred depth estimates were selected to ensure regional data consistency and aid the gridding. Two sets of cover depth surfaces (Bonnardot et al., 2020) were generated using different approaches to map megasequence boundaries associated with the Era unconformities: 1) Standard interpolation using a minimum-curvature gridding algorithm that provides minimum misfit where data points exist, and 2) Machine learning approach (Uncover-ML, Wilford et al., 2020) that allows to learn about relationships between datasets and therefore can provide better depth estimates in areas of sparse data points distribution and assess uncertainties. This data package includes the depth estimates data points compiled and used for gridding each surface, for the Base Cenozoic, Base Mesozoic, Base Paleozoic and Base Neoproterozoic (Figure 1). To provide indicative trends between the depth data points, regional interpolated depth surface grids are also provided for the Base Cenozoic, Base Mesozoic, Base Paleozoic and Base Neoproterozoic. The grids were generated with a standard interpolation algorithm, i.e. minimum-curvature interpolation method. Refined gridding method will be necessary to take into account uncertainties between the various datasets and variable distances between the points. These surfaces provide a framework to assess the depth and possible spatial extent of resources, including basin-hosted mineral resources, basement-hosted mineral resources, hydrocarbons and groundwater, as well as an input to economic models of the viability of potential resource development.
-
The map and underlying digital dataset provide national and regional-scale context for a wider variety of applications, including offshore industries, area-based environmental management, scientific research and public education. Australia’s Seabed Map is based on the revised AusBathyTopo 250m (Australia) 2023 grid (Beaman, 2023), the most comprehensive, continental-scale compilation of bathymetry data in the Australian region. The map extends across a vast area from 92°E to 172° E and 8°S to 60° S. This includes areas adjacent to the Australian continent and Tasmania, and surrounding Macquarie Island and the Australian Territories of Norfolk Island, Christmas Island, and Cocos (Keeling) Islands. Australia's marine jurisdiction offshore from the territory of Heard and McDonald Islands and the Australian Antarctic Territory are not included. The new map provides a complete three-dimensional picture of the seafloor and is a significant improvement since it was last revised in 2009. In particular, the map incorporates new innovations such as the use of earth observation data (satellite based) produced by Digital Earth Australia to improve coastline definition and present a seamless transition between land and sea. The data is compiled from 1582 individual surveys using multibeam echosounders, single-beam echosounders, LiDAR, or 3D seismic first returns, as well as higher-resolution regional compilations, and other source data including Electronic Navigation Charts and satellite derived bathymetry. The new map represents decades of data collection, analysis, investment and collaboration from Australia’s seabed mapping community. The 250 m resolution is only supported where direct bathymetric observations are sufficiently dense (e.g. where swath bathymetry data or digitised chart data exist). In many regions, this 250 m grid size is far in excess of the optimal grid size for some of the input data used. The AusBathyTopo250m grid and higher-resolution regional datasets are available on the AusSeabed Marine Data Portal as the AusBathyTopo Series. This map is not suitable for use as an aid to navigation, or to replace any products produced by the Australian Hydrographic Office. Medium: Digital PDF download.
-
Over 8,200 line kilometres of gravity and magnetic data, acquired during the 2020 Otway Basin Seismic Program (OBSP), were combined with public domain survey and satellite data to produce seamless maps of the NW-SE trending deep-water Otway Basin. These data provide valuable information on the geometry and spatial extent of igneous rocks in the deep-water basin. While the top of basement can effectively be imaged from seismic reflection datasets onshore in the Otway Basin, it remains problematic in parts of the deep-water offshore region due to variable seismic data quality. Modelling of the magnetic line data provides an estimate of the depth to the top of basement, an important interface for understanding hydrocarbon prospectivity because it plays a key role in characterising the tectonic evolution of the basin, and thus the thermal maturation history of hydrocarbons. Magnetic modelling was performed using a profile-based curve matching technique producing a depth estimate to the top of the magnetic body that is assumed to be the top of the basement. However, this assumption is flawed where there are volcanic or igneous intra-sedimentary rocks in the basin, as is the case for the Otway Basin where the interpretation of seismic reflection data shows highly reflective events corresponding to igneous features. In most parts of the basin, the modelling results show two layers: a shallow layer (depths < 1000m) corresponding to near surface volcanics, and a deeper layer (depths > 1000m) attributed to the top of the magnetic basement. Magnetic basement shows some similarities with basement picked on seismic reflection data, though in some areas the magnetic basement is shallower. The results also show that the depth to basement is not well resolved in areas with abundant intra-sedimentary igneous rocks. Further investigation is needed in such areas. Presented at the 2024 Australian Society of Exploration Geophysicists (ASEG) Discover Symposium