Birrindudu
Type of resources
Keywords
Publication year
Topics
-
Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. The Paleo to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin located in northwestern Northern Territory and northeastern Western Australia. The Birrindudu Basin is a region of focus for the second phase of the EFTF program (2020–2024) as it contains strata of similar age to the prospective McArthur Basin, South Nicholson region and Mount Isa Province, but remains comparatively poorly understood. Geoscience Australia have undertaken (via the service provider, FIT, Schlumberger) stratigraphic reconstructions of bulk volatile chemistry from fluid inclusions from the NTGS stratigraphic drillhole 99VRNTGSDD1, Birrindudu Basin, located in the northwest Northern Territory. This ecat record releases the final report containing the results of fluid inclusion stratigraphy, thin section and microthermometry analyses, raw data files (*.LAS) and rock descriptions by FIT Schlumberger. Company reference number FI230005c.
-
<div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential.</div><div><br></div><div>The Paleo to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin located in northwestern Northern Territory and northeastern Western Australia. The Birrindudu Basin is a region of focus for the second phase of the EFTF program (2020–2024) as it contains strata of similar age to the prospective McArthur Basin, South Nicholson region and Mount Isa Province, but remains comparatively poorly understood.</div><div><br></div><div>Geoscience Australia have undertaken (via the service provider, FIT, Schlumberger) Fluid Inclusion Petrography and Microthermometry analysis of samples for the drillhole LBD2, Birrindudu Basin, located in the northwest Northern Territory (Company reference number MT#F1230005a).</div><div><br></div><div>This eCat Record accompanies the report containing the results of fluid inclusion stratigraphy on this drillhole (eCat record 148975)</div>
-
<div>This study was commissioned by Geoscience Australia (GA) as part of the Exploring for the Future program to produce a report on the organic petrology for rock samples from drill holes of the Birrindudu Basin, Northern Territory, Australia. A suite of 130 drill core samples from 6 drill holes was analysed using standard organic petrological methods to identify the types of organic matter present, assess their relative abundances and determine the levels of thermal maturity attained by the sedimentary organic matter using the reflectance of organoclasts present. </div>
-
<div>Geoscience Australia’s Exploring for the Future (EFTF) program is a multi-year Australian Government initiative, led by Geoscience Australia in partnership with State and Territory governments. The EFTF program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and information, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to a low emissions economy, strong resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The EFTF program, which commenced in 2016, is an eight year, $225 million investment by the Australian Government.</div><div><br></div><div>This report presents the results of Grains with Oil Inclusions (GOI™) and Frequency of Oil Inclusions (FOI™) on rock samples from three selected drill holes across the Birrindudu Basin. Forty-five samples were obtained from drill holes WLMB001B, ANT003 and 99VRNTGSDD1. GOI™ and FOI™ was conducted on sedimentary and carbonate vein lithologies to investigate the potential presence of oil inclusions. Oil inclusions were recorded in samples taken from drill holes WLMB001B and ANT003, but not 99VRNTGSDD1. Analysis was undertaken by CSIRO under contract to Geoscience Australia.</div>
-
<div>This report presents the results of petrographic and X-ray Diffraction analysis undertaken by Microanalysis Australia under contract to Geoscience Australia, on rock samples collected from selected drill holes across the Proterozoic Birrindudu Basin and underlying metamorphic basement.</div><div><br></div>
-
<div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential.</div><div><br></div><div>The Paleo to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin located in northwestern Northern Territory and northeastern Western Australia. The Birrindudu Basin is a region of focus for the second phase of the EFTF program (2020–2024) as it contains strata of similar age to the prospective McArthur Basin, South Nicholson region and Mount Isa Province, but remains comparatively poorly understood.</div><div><br></div><div>Geoscience Australia have undertaken (via the service provider, FIT, Schlumberger) Fluid Inclusion Petrography and Microthermometry analysis of samples for the drillhole 99VRNTGSDD1, Birrindudu Basin, located in the northwest Northern Territory (Company reference number MT#F1230005c).</div><div><br></div><div>This eCat Record accompanies the report containing the results of fluid inclusion stratigraphy on this drillhole (eCat record 148973).</div>
-
<div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential.</div><div><br></div><div>The Paleo to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin located in northwestern Northern Territory and northeastern Western Australia. The Birrindudu Basin is a region of focus for the second phase of the EFTF program (2020–2024) as it contains strata of similar age to the prospective McArthur Basin, South Nicholson region and Mount Isa Province, but remains comparatively poorly understood.</div><div><br></div><div>Geoscience Australia have undertaken (via the service provider, FIT, Schlumberger) Fluid Inclusion Petrography and Microthermometry analysis of samples for the drillhole WLMB001B, Birrindudu Basin, located in the northwest Northern Territory (Company reference number MT#FI230004a).</div><div><br></div><div>This eCat Record accompanies the report containing the results of fluid inclusion stratigraphy on this drillhole (eCat record 149178)</div>
-
Led by Geoscience Australia, Exploring for the Future (EFTF) is a A$225 million Australian Government program dedicated to exploring Australia’s resource potential and boosting investment. The EFTF program energy component aimed to attract industry investment by delivering a suite of new precompetitive geoscience data in prospective Australian sedimentary basins. Through EFTF, Geoscience Australia has acquired significant amounts of new geomechanical data from underexplored onshore sedimentary basins with identified hydrocarbon prospectivity, from both legacy and newly acquired samples. These data were acquired to build a better understanding of basin sediment rock properties, particularly looking at the reservoir and seal potential of postulated unconventional and conventional targets. Four major datasets are presented herein, representing prospective intervals from the Paleozoic Canning Basin of Western Australia, the Neoproterozoic-Paleozoic Officer Basin of South Australia and Western Australia, the Paleo-Mesoproterozoic South Nicholson region of the Northern Territory and northwest Queensland, and the Paleo-Mesoproterozoic Birrindudu Basin of the Northern Territory and Western Australia. Additionally, the Paleo-Mesoproterozoic McArthur Basin of the Northern Territory is represented by a small number of analyses. Tests include unconfined compressive strength tests, laboratory ultrasonic measurements, single and multi-stage triaxial tests and Brazilian tensile strength tests. These datasets are a precompetitive resource that can facilitate investment decisions in frontier regions, helping to identify elements of conventional and unconventional hydrocarbon systems as well as providing essential data to assess geological storage opportunities. <b>Citation:</b> Bailey Adam, Dewhurst David, Wang Liuqi, Carson Chris, Anderson Jade, Butcher Grace, Henson Paul (2024) Exploring for the Future: new geomechanical data in frontier Australian basins. Australian Energy Producers Journal 64, 155-168. https://doi.org/10.1071/EP23029
-
Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. The name ‘Birrindudu Basin’ was first introduced by Blake et al. (1975) and Sweet (1977) for a succession of clastic sedimentary rocks and carbonates, originally considered to be Paleoproterozoic to Neoproterozoic in age, and overlain by the Neoproterozoic Victoria Basin (Dunster et al., 2000), formerly known as the Victoria River Basin (see Sweet, 1977).
-
Exploring for the Future, Strontium, Oxygen and Carbon Isotopes from the Birrindudu Basin, Australia
<div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. </div><div><br></div><div>The Paleo to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin located in northwestern Northern Territory and northeastern Western Australia. The Birrindudu Basin is a region of focus for the second phase of the EFTF program (2020–2024) as it contains strata of similar age to the prospective McArthur Basin, South Nicholson region and Mount Isa Province, but remains comparatively poorly understood. Geoscience Australia, in collaboration with the Northern Territory Geological Survey is acquiring isotopic, geochronological, geochemical and geomechanical data from drillholes intersecting the Birrindudu Basin as part of phase two of EFTF. </div><div><br></div><div>This report presents results on selected rock samples from the Birrindudu Basin, conducted by the Mawson Analytical Spectrometry Services, University of Adelaide, under contract to Geoscience Australia. These results include:</div><div>1. Carbon (δ13C), oxygen (δ18O) and strontium (87Sr/86Sr) isotopes on carbonate-bearing samples, and</div><div>2. Trace element data on the leachates prepared for 87Sr/86Sr ratio analyses.</div>