From 1 - 10 / 20
  • The northern Houtman Sub-basin is an under-explored region of Australia’s western continental margin. It is located at the transition between the non-volcanic margin of the northern Perth Basin and the volcanic province of the Wallaby Plateau, and lies adjacent to the Wallaby-Zenith Transform Margin. In 2014-15, Geoscience Australia acquired new 2D seismic data (GA-349) across the northern Houtman Sub-basin to assess its hydrocarbon prospectivity. This study integrated interpretation of the recently acquired GA-349 survey, with Geoscience Australia’s existing regional interpretation of the Houtman and Abrolhos sub-basins, to develop a 2D structural and stratigraphic interpretation for the study area. As there are no wells in the northern Houtman sub-basin, the age and lithologies of the mapped sequences were derived from regional mapping, stratal relationships and seismic facies. The new data clearly images a large depocentre, including a much thicker Paleozoic section (up to 13 km) than previously recognised. Extending the length of the inboard part of northern sub-basin are a series of large half-graben (7-10 km thick), interpreted to have formed as a result of Permian rifting. Overlying these half-graben, and separated by an unconformity, is a thick succession (up to 6 km) interpreted to represent a subsequent late Permian to Early Jurassic phase of the thermal subsidence. A second phase of rifting started in the Early Jurassic and culminated in Early Cretaceous breakup. The sedimentary succession deposited during this phase of rifting is highly faulted and heavily intruded in the outboard part of the basin, adjacent to the Wallaby Saddle, where intrusive and extrusive complexes are clearly imaged on the seismic. In contrast to the southern part of the Houtman Sub-basin, which experienced rapid passive margin subsidence and regional tilting after the Valanginian breakup, the northern sub-basin remained mostly exposed sub-aerially until the Aptian while the Wallaby Zenith Fracture Zone continued to develop. Poster/Extended Abstract presented at the Australian Exploration Geoscience Conference (AEGC) 2018 (https://www.aig.org.au/events/first-australian-exploration-geoscience-conference/)

  • Interpretation of newly acquired seismic data in the northern Houtman Sub-basin (Perth Basin) suggests the region contains potential source rocks similar to those in the producing Abrolhos Sub-basin. The regionally extensive late Permian–Early Triassic Kockatea Shale has the potential to contain the oil-prone Hovea Member source interval. Large Permian syn-rift half-graben, up to 10 km thick, are likely to contain a range of gas prone source rocks. Further potential source rocks may be found in the Jurassic-Early Cretaceous succession, including the Cattamarra Coal Measures, Cadda shales and mixed sources within the Yarragadee Formation. This study investigates the possible maturity and charge history of these different source rocks. A regional pseudo-3D petroleum systems model is constructed using new seismic interpretations. Heat flow is modelled using crustal structure and possible basement composition determined from potential field modelling, and subsidence analysis is used to investigate lithospheric extension through time. The model is calibrated using temperature and maturity data from 9 wells in the Houtman and Abrolhos sub-basins. Source rock properties are assigned based on an extensive review of TOC, Rock Eval and kinetic data for the offshore northern Perth Basin. Petroleum systems analysis results show that Permian, Triassic and Early Jurassic source rocks may have generated large cumulative volumes of hydrocarbons across the northern Houtman Sub-basin, whilst Middle Jurassic‒Cretaceous sources remain largely immature. However the timing of hydrocarbon generation and expulsion with respect to trap formation and structural reactivation is critical for the successful development and preservation of hydrocarbon accumulations.

  • <div>Komatiites are extinct volcanic rocks that formed by partial melting of 20-50% of their mantle source – a unique feature that allows us to understand the composition of the mantle in the early Earth. Due to their high temperature, komatiites incorporate proximal rock types on their way to, and on, the Earth’s surface. In this craton-scale study, we looked to use this property of komatiite magmas to track their interaction with the crust of the Yilgarn Craton. The results yielded Hf and Nd isotope arrays (Figure 1), that potentially have three components. The first likely represents the depleted mantle source of the magmas, and most plot in the region between +2 and +6 εHfi and 0 to +3.3 εNdi. The second source represents a more unradiogenic component, most likely 3.5-3.3 Ga continental crust (minimum). This component is more notable in the 2.8 and 2.9 Ga events with values trending to CHUR and negative εNd. The 2.8 Ga dataset, and particularly the komatiitic basalts from the Marda region, appear to show the most contamination with old crust. This is likely due to this area representing the old nucleus of the craton, as shown in Hf-isotope mapping. The final component represents an ultra-depleted source. Data from Ravensthorpe, Mt Clifford, and Wiluna show trends towards this source referred to as the Early Refractory Reservoir (ERR)(Nebel et al. 2014). We suggest that the 2.7 and 2.9 Ga plumes interacted with refractory Hadean plume residues, which constitute the ERR, within the Yilgarn lithosphere. Isotopic data on crustal rocks suggests the Yilgarn may have formed in the Hadean to Eoarchean, and hence the ERR could represent the residue of the Hadean crust generation process that formed the low Lu/Hf Jack Hills zircons. If correct, this suggests that the ERR survived for much longer than previously thought, as a rare component within the Earth’s oldest cratons.</div> This Abstract was submitted/presented to the 2023 6th International Archean Symposium (6IAS) 25 - 27 July (https://6ias.org/)

  • <div>The interpretation of AusAEM airborne electromagnetic (AEM) survey conductivity sections in the Canning Basin region delineates the geo-electrical features that correspond to major chronostratigraphic boundaries, and captures detailed stratigraphic information associated with these boundaries. This interpretation forms part of an assessment of the underground hydrogen storage potential of salt features in the Canning Basin region based on integration and interpretation of AEM and other geological and geophysical datasets. A main aim of this work was to interpret the AEM to develop a regional understanding of the near-surface stratigraphy and structural geology. This regional geological framework was complimented by the identification and assessment of possible near-surface salt-related structures, as underground salt bodies have been identified as potential underground hydrogen storage sites. This study interpreted over 20,000 line kilometres of 20&nbsp;km nominally line-spaced AusAEM conductivity sections, covering an area approximately 450,000 km2 to a depth of approximately 500&nbsp;m in northwest Western Australia. These conductivity sections were integrated and interpreted with other geological and geophysical datasets, such as boreholes, potential fields, surface and basement geology maps, and seismic interpretations. This interpretation produced approximately 110,000 depth estimate points or 4,000 3D line segments, each attributed with high-quality geometric, stratigraphic, and ancillary data. The depth estimate points are formatted for Geoscience Australia’s Estimates of Geological and Geophysical Surfaces database, the national repository for formatted depth estimate points. Despite these interpretations being collected to support exploration of salt features for hydrogen storage, they are also intended for use in a wide range of other disciplines, such as mineral, energy and groundwater resource exploration, environmental management, subsurface mapping, tectonic evolution studies, and cover thickness, prospectivity, and economic modelling. Therefore, these interpretations will benefit government, industry and academia interested in the geology of the Canning Basin region.</div>

  • <div>The Yilgarn Craton of Western Australia represents one of the largest pieces of Precambrian crust on Earth, and a key repository of information on the Meso-Neoarchean period. Understanding the crustal, tectonic, thermal, and chemical evolution of the craton is critical in placing these events into an accurate geological context, as well as developing holistic tectonic models for the Archean Earth. In this study, we collected a large U-Pb (420 collated samples) and Hf isotopic (2163 analyses) dataset on zircon to investigate the evolution of the craton. These data provide strong evidence for a Hadean-Eoarchean origin for the Yilgarn Craton from mafic crust at ca. 4000 Ma. This ancient cratonic nucleus was subsequently rifted, expanded and reworked by successive crustal growth events at ca. 3700 Ma, ca. 3300 Ma, 3000-2900 Ma, 2825-2800 Ma, and ca. 2730-2620 Ma. The <3050 Ma crustal growth events correlate broadly with known komatiite events, and patterns of craton evolution, revealed by Hf isotope time-slice mapping, image the periodic break-up of the Yilgarn proto-continent and the formation of rift-zones between the older crustal blocks. Crustal growth and new magmatic pulses were focused into these zones and at craton margins, resulting in continent growth via internal (rift-enabled) expansion, and peripheral (crustal extraction at craton margins) magmatism. Consequently, we interpret these major geodynamic processes to be analogous to plume-lid tectonics, where the majority of tonalite-trondhjemite-granodiorite (TTG) felsic crust, and later granitic crust, was formed by reworking of hydrated mafic rocks and TTGs, respectively, via a combination of infracrustal and/or drip-tectonic settings. While this process of crust formation and evolution is not necessarily restricted to a specific geodynamic system, we find limited direct evidence that subduction-like processes formed a major tectonic component, aside from re-docking the Narryer Terrane to the craton at ca. 2740 Ma. Overall, these 'rift-expansion' and 'craton margin' crustal growth process led to an intra-cratonic architecture of younger, juvenile terranes located internal and external to older, long-lived, reworked crustal blocks. This framework provided pathways that localized later magmas and fluids, driving the exceptional mineral endowment of the Yilgarn Craton.</div> This Abstract/Poster was submitted to & presented at the 2023 6th International Archean Symposium (6IAS) 25 - 27 July (https://6ias.org/)

  • <div>Archean greenstone belts are a vital window into the tectonostratigraphic processes that operated in the early Earth and the geodynamics that drove them. However, the majority of greenstone belts worldwide are highly-deformed, complicating geodynamic interpretations. The volcano-sedimentary sequence of the 2775-2690 Ma Fortescue Group is different in that it is largely undeformed, offering a unique insight into the architecture of greenstone sequences. In the Fortescue magmatic rocks, geochemical signatures that in deformed belts in the Superior or Yilgarn Cratons might have been interpreted as arc-like, are explained by contamination of rift-related mantle and plume-derived magmas with Pilbara basement crust; understanding the wider geological and structural setting allows a more complete interpretation.</div><div> However, contamination of Fortescue magmas by an enriched sub-continental mantle lithosphere (SCLM) is an alternative hypothesis to the crustal contamination model. If demonstrated, the addition of sediments and fluids to the SCLM, required to form enriched/metasomaytised SCLM, would suggest active subduction prior to the Neoarchean. To test this hypothesis, we collected Hf-O isotopic data on zircons from felsic volcanic rocks throughout the Fortescue Group; if the contamination had a subducted sedimentary component (δ18O>20‰), then the O-isotopes should record a heavy signature.</div><div> The results show that the ca. 2775 Ma Mt Roe Formation has εHfi from 0 to -5.6, and δ18OVSMOW of +4.8- +0.3‰, with the majority of values <+3‰. The ca. 2765 Ma Hardey Formation (mostly sediments) has highly unradiogenic εHfi of -5 to -9.4, and δ18O of +7.8- +6.6‰. The ca. 2730 Ma Boongal Formation displays similar values as for Mt Roe, with εHfi +1.9 to -5.5 and δ18O +3.0 to -0.6‰. The ca. 2720 Ma Tumbiana Formation shows the greatest range in εHfi from +4.9 to -4.6, with δ18O +7.1- +0.7‰, with the majority between +4.5 and +2.5‰. Data from the 2715 Ma Maddina Formation are more restricted, with εHfi between +4.0 and -0.1, and δ18O +5.0- +3.8‰. The youngest formation, the 2680 Ma Jeerinah Formation, has εHfi +2.3 to -6.2, and δ18O +5.1 to -2.1‰.</div><div> Importantly, these data provide little evidence of a cryptic enriched SCLM source in the Fortescue magmas. Furthermore, the dataset contains some of the lightest δ18O data known for Archean zircon, highlighting a ca. 100 Myr period of high-temperature magma-water interaction, with long-term continental emergence implied by the trend to meteoric δ18O compositions. The exception to this is the Hardey Formation, which may have formed via crustal anatexis in a period of reduced heat-flow between the 2775-2665 and 2730-2680 Ma events. Data from the other formations show a broad trend of increasing δ18O and εHf from 2775 to 2680 Ma. We suggest this represents the effects of progressive cratonic rifting, allowing mantle-derived magmas to reach the surface less impeded, and also a decreasing role of meteoric water in the rift zone as the sea invades. As a result, the εHf and δ18O data from the Fortescue Group represent the evolving nature of an Archean rift zone, from an emergent volcanic centre, to a submarine environment.</div><div><br></div>This Abstract was submitted/presented to the 2023 6th International Archean Symposium (6IAS) 25 - 27 July (https://6ias.org/)

  • Refined wind vulnerability curves for residential houses in Western Australia. The dataset contains heuristic vulnerability curves for individual communities in WA, initially provided by Geoff Boughton (JCU), and modified by Martin Wehner (GA), in line with commentary from Geoff that the curves are representative of individual houses. The vulnerability would increase in a community situation due to debris generation from upwind houses. An additional curve for the reinforced masonry/concrete roof houses observed in Exmouth is also included.

  • AusAEM 02 Airborne Electromagnetic Survey, NT /WA, 2019-2020: TEMPEST® AEM data and conductivity estimates The accompanying data package, titled “AusAEM 02 WA/NT, 2019-20 Airborne Electromagnetic Survey: TEMPEST® airborne electromagnetic data and conductivity estimates”, was released on 10 August 2020 by Geoscience Australia (GA), the Geological Survey of Western Australia and the Northern Territory Geological Survey. The package contains processed data from the“AusAEM 02 WA/NT, 2019-20 Airborne Electromagnetic Survey" that was flown over the North-West part of the Northern Territory across the border and all the way to the coast into Western Australia. The regional survey was flown at a 20-kilometre nominal line spacing and entailed approximately 55,675 line kilometres of geophysical data. The survey was flown in two tranches during 2019, by CGG Aviation (Australia) Pty. Ltd. under contract to Geoscience Australia, using the TEMPEST® airborne electromagnetic system. CGG also processed the data. The survey also includes a further 6,450 line kilometres of infill flying that was funded by private exploration companies, acquired in certain blocks within the survey area. The data from these infill blocks have been processed in the same manner as the regional lines and are part of this release. Geoscience Australia commissioned the AusAEM 02 survey as part of the Exploring for the Future (EFTF) program, flown over parts of the Northern Territory and Western Australia. Geoscience Australia (GA) leads the EFTF program, in collaboration with the State and Territory Geological Surveys of Australia. The program is designed to investigate the potential mineral, energy and groundwater resources of Australia driving the next generation of resource discoveries. GA managed the survey data acquisition, processing, contract, the quality control of the survey and generating two of the three inversion products included in the data package. The data release package comntains 1. A data release package summary PDF document. 2. The survey logistics and processing report and TEMPEST® system specification files 3. ESRI shape files for the regional and infill flight lines 4. Final processed point located line data in ASEG-GDF2 format 5. Conductivity estimates generated by CGG’s EMFlow conductivty-depth transform -point located line data output from the inversion in ASEG-GDF2 format -graphical (PDF) multiplot conductivity sections and profiles for each flight line -Grids generated from CGG's inversion conductivty-depth transform in ER Mapper® format (layer conductivities) 6. Conductivity estimates generated by Geoscience Australia's inversion -point located line data output from the inversion in ASEG-GDF2 format -graphical (PDF) multiplot conductivity sections and profiles for each flight line -georeferenced (PNG) conductivity sections (suitable for pseudo-3D display in a 2D GIS) -GoCAD™ S-Grid 3D objects (suitable for various 3D packages)

  • <p>Geoscience Australia (GA) generated a series of gravity and magnetic grids and enhancements covering Northern Australia. Several derivative gravity datasets have been generated 1) for the North-West Shield Western Australia region (approximately between latitudes 7‒26⁰ S and longitudes 110‒130⁰ E), 2) for the Northern Territory (approximately between latitudes 7‒26⁰ S and longitudes 125.5‒141⁰ E) and for Queensland (approximately between latitudes 7‒30⁰ S and longitudes 135‒160⁰ E). The magnetic dataset has been generated only for the North-West Shield Western Australia region (approximately between latitudes 7‒26⁰ S and longitudes 110‒130⁰ E). The magnetic and gravity data were downloaded from the Geophysical Archive Data Delivery System (GADDS), website (http://www.geoscience.gov.au/cgi-bin/mapserv?map=/nas/web/ops/prod/apps/mapserver/gadds/wms_map/gadds.map&mode=browse). Satellite Free-air (FA) gravity v27.1 (released March 11, 2019) and Satellite Topography v19.1 (released January 14, 2019) data were sourced from Sandwell et al. (2014) and downloaded from the Scripps Institution of Oceanography (SIO), National Oceanic and Atmospheric Administration (NOAA), U.S. Navy and National Geospatial-Intelligence Agency (NGA) (SIO Satellite Geodesy, website, http://topex.ucsd.edu/WWW_html/mar_grav.html). The Satellite Bouguer gravity grid with onshore correction density of 2.67 gcm-3 and offshore correction density of 2.20 gcm-3 was derived from the Free-air gravity v27.1 and Topography data V19.1. This Bouguer gravity grid was used for filling areas of data gaps in the offshore region. <p>Data evaluation and processing of gravity and magnetic data available in the area of interest resulted in the production of stitched onshore-offshore Bouguer gravity grid derived from offshore satellite Bouguer gravity grid and GA’s onshore ground and airborne gravity survey data and a stitched Total Magnetic Intensity (TMI) grid derived from airborne and shipborne surveys (Tables 1 and 5). A Reduction to the Pole (RTP) grid was derived from the stitched TMI grid. The TMI, RTP, FA and terrain corrected Bouguer gravity anomalies are standard datasets for geological analysis. The free-air gravity anomaly provides the raw and basic gravity information. Images of free-air gravity are useful for first-pass interpretation and the data is used for gravity modelling. Magnetic anomalies provide information on numerous magnetic sources, including deep sources as arising from the structure and composition of magnetic basement and shallow sources such as intra-sedimentary magnetic units (e.g. volcanics, intrusions, and magnetic sedimentary layers). A standard TMI image will contain information from all these sources. Geosoft Oasis montaj software was used throughout the data processing and enhancement procedure and the montaj GridKnit module was used to generate the stitched gravity and magnetic grids. <p>Enhancement techniques have been applied to the final processed Bouguer gravity and RTP magnetic grids to highlight subtle features from various sources and to separate anomalies from different source depths. These enhancement techniques are described in the next section. <p>Enhancement processing techniques and results <p>A summary of image processing techniques used to achieve various outcomes is described in Table 1. <p>Data type Filter applied Enhancement/outcome <p>Gravity/Magnetic First vertical derivative (1VD) Near surface features (e.g. intrabasinal) <p>Gravity/Magnetic Upward continuation Noise reduction in data <p>Gravity/Magnetic Low pass filter, or large distance upward continuation Enhancement of deep features (e.g. basement) <p>Gravity/Magnetic High pass filter Enhancement of shallow features (e.g. surface anomalies) <p>Gravity/Magnetic Tilt filter and 1VD Enhancement of structure (e.g. in basement) <p>Gravity/Magnetic ZS-Edgezone and ZS-Edge filters Enhancement of edges <p>Gravity/Magnetic horizontal modulus / horizontal gradient Enhancement of boundaries <p>Magnetic RTP (reduction to the pole), Compound Anomaly, and Analytic Signal filter Accurate location of sources

  • Vlaming Shelf reef polygons were manually digitized from multibeam echosounder datasets collected on marine survey GA0334 in March/April 2012. Reef areas were defined as exposed, hard substrate that are often raised above the surrounding seafloor. They were mapped using bathymetry and backscatter data along with bathymetric derivatives including; slope, hillshaded bathymetry and contours. Features were mapped at a scale of 1:10 000. This dataset is published with the permission of the CEO, Geoscience Australia.