From 1 - 10 / 38
  • This web service provides access to the Geoscience Australia (GA) ISOTOPE database containing compiled age and isotopic data from a range of published and unpublished (GA and non-GA) sources. The web service includes point layers (WFS, WMS, WMTS) with age and isotopic attribute information from the ISOTOPE database, and raster layers (WMS, WMTS, WCS) comprising the Isotopic Atlas grids which are interpolations of the point located age and isotope data in the ISOTOPE database.

  • Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. This Record presents new U-Pb zircon geochronology from the Loch-Lilly Kars and Lake Wintlow (as described by Clark et al. 2024) Belts of the central Delamerian Orogen (Foden et al., 2020; Gilmore et al., 2023; Mole et al., 2023), performed on Geoscience Australia’s (GA) sensitive high-resolution ion microprobe (SHRIMP). The eight samples presented here (three sedimentary and five igneous rocks; Table i) were collected during Geoscience Australia’s drilling campaign across the region, which consisted of 17 drill-holes (Pitt et al., 2023), using two drilling techniques (coiled-tube rotary and conventional diamond). This work was performed as part of the MinEx CRC National Drilling initiative (NDI) and Geoscience Australia’s Darling-Curnamona-Delamerian project of the Exploring for the Future program (EFTF; <a href="https://www.eftf.ga.gov.au/">https://www.eftf.ga.gov.au/</a>). The primary aims of this drilling were to (1) understand and constrain the geology of the southern Loch-Lilly Kars Belt; and (2) assess whether Cambrian magmatic rocks continued to the south-west in the Lake Wintlow Belt, marking a possible continuation of the Stavely Belt volcanic arc rocks observed in western Victoria (Bowman et al., 2019; Lewis et al., 2016; Lewis et al., 2015; Schofield, 2018; Figure i). As both these regions are covered, this new drilling and the geochronology they allow provide the first constraints on the age of these rock units. In addition, due to the lack of surface correlation and detailed geological mapping, these units currently have no officially-defined stratigraphic nomenclature and remain unnamed. For detailed information on all drill-holes completed as part of the survey, we direct readers to the summary report by Pitt et al. (2023): <a href="https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/148639">eCat 148639</a>.

  • This Record presents new zircon U-Pb geochronological data, obtained using a Sensitive High Resolution Ion MicroProbe (SHRIMP) for five samples of plutonic and volcanic rocks from the central Lachlan Orogen and the Thomson Orogen, New South Wales. The work was carried out under the auspices of the National Geoscience Accord, as a component of the collaborative Geochronology Project between the Geological Survey of New South Wales (GSNSW) and Geoscience Australia (GA) during the reporting periods 2011-2012.

  • This Record presents new zircon U-Pb geochronological data, obtained using a Sensitive High Resolution Ion MicroProbe (SHRIMP) for thirty-five samples of plutonic rocks from the New England Orogen, New South Wales. The work was carried out under the auspices of the National Geoscience Accord, as a component of the collaborative Geochronology Project between the Geological Survey of New South Wales (GSNSW) and Geoscience Australia (GA) during the reporting periods 2012-2014.

  • <div>New SHRIMP U-Pb detrital zircon geochronology on Mesoproterozoic and Paleoproterozoic siliciclastic rocks from the South Nicholson region, in concert with recently acquired complementary regional geophysical datasets, has enabled comprehensive revision of the regional Proterozoic tectono-stratigraphy. The identification of analogous detrital zircon spectra between units deposited in half-graben hanging walls of major ENE-WSW trending extensional faults, the Benmara, Bauhinia, and Maloney-Mitchiebo faults, offers compelling evidence for regional tectono-stratigraphic correlation. Units sampled from the hanging walls of these faults are characterised by immature proximal lithofacies and host a small yet persistent population of <em>ca</em> 1640–1650 Ma aged zircon and lack Mesoproterozoic detritus, consistent with deposition coincident with extension during the River Extension event at <em>ca</em> 1640 Ma, an event previously identified from the Lawn Hill Platform in western Queensland. This finding suggests the hanging wall sequences are chrono-stratigraphically equivalent to the highly prospective sedimentary rocks of the Isa Superbasin, host to world-class sediment-hosted base metal deposits across western Queensland and north-eastern Northern Territory. Subsequent inversion of the extensional faults, resulted in development of south-verging thrusts, and exhumation of late Paleoproterozoic hanging wall siliciclastic rocks through overlying Mesoproterozoic South Nicholson Group rocks as fault propagated roll-over anticlines. These geochronology data and interpretations necessitate revision of the stratigraphy and the renaming of a number of stratigraphic units in the South Nicholson region. Accordingly, the distribution of the highly prospective late Paleoproterozoic units of the McArthur Basin, Lawn Hill Platform and Mount Isa Province is greatly expanded across the South Nicholson region. These findings imply that the previously underexplored South Nicholson region is a highly prospective greenfield for energy and mineral resources.</div> <b>Citation:</b> C. J. Carson, N. Kositcin, J. R. Anderson & P. A. Henson (2023) A revised Proterozoic tectono-stratigraphy of the South Nicholson region, Northern Territory, Australia—insights from SHRIMP U–Pb detrital zircon geochronology, <i>Australian Journal of Earth Sciences,</i> DOI: 10.1080/08120099.2023.2264355

  • This Record presents new U-Pb geochronological data, obtained via Sensitive High Resolution Ion Micro Probe (SHRIMP), from six samples of igneous rocks and four samples of sedimentary rocks, collected from south-central New South Wales. The work is part of an ongoing Geochronology Project, conducted by the Geological Survey of New South Wales (GSNSW) and Geoscience Australia (GA) under a National Collaborative Framework (NCF) agreement, to better understand the geological evolution of the central Lachlan Orogen in the East Riverina region. The results presented herein correspond to the reporting period July 2015-June 2016.

  • The Mesoproterozoic Roper Group of the McArthur Basin has excellent petroleum potential but exploration has been hampered by poor constraints on its post-depositional history that has compromised understanding of the tectonostratigraphic evolution of the basin. The Derim Derim Dolerite occupies an important position in the event chronology of the McArthur Basin, having intruded the Roper Group prior to post-Roper basin inversion, and it is also a major component of Mesoproterozoic intraplate mafic magmatism in northern Australia. Since 1997, the Derim Derim Dolerite has been assigned a magmatic crystallisation age of 1324 ± 4 Ma (all uncertainties are 95% confidence), based on unpublished Sensitive High Resolution Ion Micro Probe (SHRIMP) U–Pb analyses on baddeleyite attributed to a dolerite sample from Bureau of Mineral Resources drill-hole Urapunga 5. Herein, we establish that the SHRIMP sample originated from the type locality of the Derim Derim Dolerite in outcrop 90 km northwest of Urapunga 5 and document the 207Pb/206Pb date interpreted from the 1997 dataset. New U–Pb SHRIMP reanalysis of the same grain-mounts yielded a mean 207Pb/206Pb date of 1320.1 ± 5.3 Ma, confirming the 1997 result, and Isotope Dilution-Thermal Ionisation Mass Spectrometry (ID TIMS) analysis of baddeleyites plucked from the mounts yielded a precise mean 207Pb/206Pb date of 1327.5 ± 0.6 Ma. This date is significantly older than a baddeleyite U–Pb ID-TIMS date of ca 1313 Ma recently reported elsewhere from dolerite in the Beetaloo Sub-basin 200 km to the south, indicating that magmatism attributed to the Derim Derim Dolerite spanned at least 10–15 Ma. Previously documented geochemical variation in Mesoproterozoic intraplate mafic rocks across the Northern Territory (such as the 1325 ± 36 Ma Galiwinku Dolerite in the McArthur Basin, 1316 ± 40 Ma phonolites in the Nimbuwah Domain of the eastern Pine Creek Orogen, and 1295 ± 14 Ma gabbro in the Tomkinson Province) may reflect episodic pulses of magmatism hitherto obscured by the low precision of the available isotopic dates. The timing and geochemistry of Derim Derim-Galiwinku mafic igneous activity is strikingly similar to that of the Yanliao Large Igneous Province (LIP) in the northern North China Craton, and the global paucity of 1330–1300 Ma LIPs suggests that the North Australian Craton and the North China Craton were in relatively close proximity at that time.

  • <div>This Queensland Geological Record presents ten new Sensitive High Resolution Ion MicroProbe (SHRIMP) U–Pb zircon and monazite results obtained under the auspices of the Geological Survey of Queensland–Geoscience Australia (GSQ–GA) National Collaborative Framework (NCF) geochronology project between July 2017 and June 2018. These data were collected in support of ongoing regional mapping and geoscientific programs led by the GSQ in the Mount Isa region.&nbsp;</div><div><br></div><div><br></div><div><br></div><div><br></div><div><strong>Bibliographic reference:</strong></div><div>Kositcin, N., Lewis, C. J. Withnall, I. W., Slade, A. P., Sargent, S. and Hutton, L. J. 2023. Summary of results. Joint GSQ–GA Geochronology Project: Mount Isa region, 2017–2018. GSQ Record 2023/03. Geoscience Australia, Canberra. Record 2023/32, Geological Survey of Queensland. http://dx.doi.org/10.26186/147793</div>

  • This Record presents new U–Pb geochronological data, obtained via Sensitive High Resolution Ion Micro Probe (SHRIMP), from 43 samples of predominantly igneous rocks collected from the East Riverina region of the central Lachlan Orogen, New South Wales. The results presented herein correspond to the reporting period July 2016–June 2020. This work is part of an ongoing Geochronology Project, conducted by the Geological Survey of New South Wales (GSNSW) and Geoscience Australia (GA) under a National Collaborative Framework agreement, to better understand the geological evolution and mineral prospectivity of the central Lachlan Orogen in southern NSW (Bodorkos et al., 2013; 2015; 2016, 2018; Waltenberg et al., 2019).

  • <div>Historically, isotopic data are collected at the individual sample level on local- to regional-scale features and are dispersed among decades of both published and unpublished individual academic literature, university theses and geological survey reports, in disparate formats and with widely varying levels of detail. Consequently, it has been difficult to visualise or interrogate the collective value of age and isotopic data at continental-scale. Geoscience Australia’s (GA) continental-scale Isotopic Atlas of Australia (Fraser et al., 2020), breaks this cycle of single-use science by compiling and integrating <strong>multiple radiometric age and isotopic tracer datasets</strong> and making them publicly accessible and useable through GA’s Exploring for the Future (EFTF) Portal.</div><div><br></div><div>The first iteration of a continental-scale Isotopic Atlas of Australia was introduced by Geoscience Australia at the 2019 SGGMP conference in Devonport, Tasmania, through a talk and poster display. In the three years since, progress on this Isotopic Atlas has continued and expanded datasets are now publicly available and downloadable via Geoscience Australia’s Exploring for the Future (EFTF) Geochronology and Isotopes Data Portal.&nbsp;</div>