Surface water
Type of resources
Keywords
Publication year
Topics
-
Publicly available baseline surface water data are compiled to provide a common information base for resource development and regulatory decisions in the Galilee Basin region. This data guide captures existing knowledge of the catchments and watercourses overlying the Galilee Basin, including streamflow quality and quantity, inundation, and climatological data. The Galilee Basin straddles the Great Dividing Range and encompasses the headwaters of 9 major river basins, with the largest area underlying Cooper Creek, Diamantina River and Flinders River catchments. The Galilee Basin geological boundary also intersects parts of the catchment of the Burdekin River, Fitzroy River, Warrego River, Bulloo River, Paroo River and Condamine-Balonne rivers. The data on the catchments overlying the Galilee Basin have been summarised at a point in time to inform decisions on resource development activities. Key data sources are the Water Monitoring Information Portal (Queensland Government), Water Data Online (Bureau of Meteorology), DEA Water Observations (Geoscience Australia) and Terrestrial Ecosystem Research Network.
-
Up to date information about the extent and location of surface water provides all Australians with a common understanding of this valuable and increasingly scarce resource. Digital Earth Australia (DEA) Waterbodies shows the wet surface area of waterbodies as estimated from satellites. It does not show depth, volume, purpose of the waterbody, nor the source of the water. DEA Waterbodies uses Geoscience Australia’s archive of over 30 years of Landsat satellite imagery to identify where over 300,000 waterbodies are in the Australian landscape and tells us the wet surface area within those waterbodies. It supports users to understand and manage water across Australia. For example, users can gain insights into the severity and spatial distribution of drought or identify potential water sources for aerial firefighting. The tool uses a water classification for every available Landsat satellite image and maps the locations of waterbodies across Australia. It provides a timeseries of wet surface area for waterbodies that are present more than 10% of the time and are larger than 2700m2 (3 Landsat pixels). The tool indicates changes in the wet surface area of waterbodies. This can be used to identify when waterbodies are increasing or decreasing in wet surface area. More information on using this dataset can be accessed on the DEA Knowledge Hub at <a href="https://docs.dea.ga.gov.au/data/product/dea-waterbodies-landsat/?tab=overview">https://docs.dea.ga.gov.au/data/product/dea-waterbodies-landsat/?tab=overview</a>. Refer to the research paper Krause et al. 2021 for additional details: <a href="https://doi.org/10.3390/rs13081437">https://doi.org/10.3390/rs13081437</a> The update from version 2 to version 3.0 of the DEA Waterbodies product and service was created through a collaboration between Geoscience Australia, the National Aerial Firefighting Centre, Natural Hazards Research Australia, and FrontierSI to make the product more useful in hazard applications. Geoscience Australia, the National Aerial Firefighting Centre, Natural Hazards Research Australia, and FrontierSI advise that the information published by this service comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, FrontierSI, Geoscience Australia, the National Aerial Firefighting Centre and Natural Hazards Research Australia (including its employees and consultants) are excluded from all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it.
-
Accurate information about the extent, frequency and duration of forest inundation is required to inform ecological, biophysical and hydrological models and enables floodplain managers to quantify the efficacy of flood mitigation/modification activities. Open water classifiers derived from optical remote sensing typically underestimate or fail to detect floodplain forest inundation. This paper presents a new method for detecting forest inundation dynamics using freely available Landsat and Sentinel 2 data, referred to as short-wave infrared mapping under vegetation. The method uses a dynamic threshold that accounts for the additional shortwave infrared reflectance caused by the presence of tree canopies over floodwater. The method is demonstrated at five Ramsar listed River Red Gum floodplain forest wetlands in southeastern Australia. Accuracy assessment based on independent drone imagery from a wide range of vegetated wetlands showed an absolute accuracy of 67%–70% and a fuzzy accuracy of 81%–83%. We found the method is conservative, and underestimates inundation (16%–18%) but very rarely misclassifies dry pixels as inundated (0.3%–0.6%). When compared to river gauge data, the method shows similar trends to an open water classifier (i.e., the area of inundated vegetation increases with increasing river height). The method is conservative compared to lidar-based floodplain inundation models but can be applied wherever cloud-free scenes of Landsat or Sentinel 2 have been acquired, thereby enabling floodplain managers with the ability to quantify changes in inundation dynamics in places/time-periods where lidar is unavailable. <b>Citation:</b> Lymburner, L., Ticehurst, C., Adame, M. F., Sengupta, A., & Kavehei, E. (2024). Seeing the floods through the trees: Using adaptive shortwave infrared thresholds to map inundation under wooded wetlands. <i>Hydrological Processes</i>, 38(6), e15174. https://doi.org/10.1002/hyp.15174
-
Publicly available baseline surface water data are compiled to provide a common information base for resource development and regulatory decisions in the Adavale Basin region. This data guide captures existing knowledge of the catchments and watercourses overlying the Adavale Basin, including streamflow quality and quantity, inundation, and climatological data. The Adavale Basin underlies 3 main surface water catchments that contribute to Cooper Creek, including the Barcoo, Bulloo and Warrego rivers. The Adavale Basin geological boundary also intersects the upper parts of the Paroo River catchment and a small part of the Condamine-Balonne catchment. The data on the catchments overlying the Adavale Basin have been summarised at a point in time to inform decisions on resource development activities. Key data sources are the Water Monitoring Information Portal (Queensland Government), Water Data Online (Bureau of Meteorology), DEA Water Observations (Geoscience Australia) and Terrestrial Ecosystem Research Network.
-
Publicly available baseline surface water data are compiled to provide a common information base for resource development and regulatory decisions in the Cooper Basin region. This data guide captures existing knowledge of the catchments and watercourses overlying the Cooper Basin, including streamflow quality and quantity, inundation, and climatological data. The Cooper Basin underlies 3 surface water catchments: the Diamantina River, Cooper Creek and Bulloo River. All 3 rivers follow a similar flow pattern, with most of the run-off generated in the higher rainfall headwater areas (outside the Cooper Basin) before flowing down into extensive floodplains and ending up in terminal lake systems. The data on the catchments overlying the Cooper Basin have been summarised at a point in time to inform decisions on resource development activities. Key data sources are the Water Monitoring Information Portal (Queensland Government), Water Data Online (Bureau of Meteorology), DEA Water Observations (Geoscience Australia) and Terrestrial Ecosystem Research Network.
-
Publicly available baseline surface water data are compiled to provide a common information base for resource development and regulatory decisions in the north Bowen Basin region. This data guide captures existing knowledge of the catchments and watercourses overlying the north Bowen Basin, including streamflow quality and quantity, inundation and climatological data. Most of the north Bowen Basin falls to the east of the Great Dividing Range within the Fitzroy River catchment. The basin also includes part of the Burdekin River catchment and small parts of the coastal catchments of Styx and Burnett river catchments. The data on the catchments overlying the north Bowen Basin have been summarised at a point in time to inform decisions on resource development activities. Key data sources are available from the Water Monitoring Information Portal (Queensland Government), Water Data Online (Bureau of Meteorology), DEA Water Observations (Geoscience Australia) and Terrestrial Ecosystem Research Network.