From 1 - 10 / 29
  • <div>As part of the Data Driven Discoveries program, Geoscience Australia and the Geological Survey of Queensland collaborated to re-examine legacy well cuttings for a chemostratigraphic study. The aim was to identify opportunities for resource discovery in the Devonian-aged Adavale Basin in south-central Queensland by conducting a chemostratigraphic study to define regional stratigraphic correlations in a structurally complex basin with limited well penetrations. A total of 1,489 cutting samples were analysed for whole-rock geochemistry, as well as subsets of samples for whole-rock mineralogy and/or carbonate carbon and oxygen isotopes, from a whole-rock sample. The purpose was to establish new chemostratigraphic correlations across the basin independently, using data from 10 wells that sampled the Adavale Basin.</div>

  • <div>The Lake Eyre surface water catchment covers around 1,200,000 km2 of central Australia, about one-sixth of the entire continent. It is one of the largest endorheic river basins in the world and contains iconic arid streams such as the Diamantina, Finke and Georgina rivers, and Cooper Creek. The Lake Eyre region supports diverse native fauna and flora, including nationally significant groundwater-dependent ecosystems such as springs and wetlands which are important cultural sites for Aboriginal Australians.</div><div><br></div><div>Much of the Lake Eyre catchment is underlain by the geological Lake Eyre Basin (LEB). The LEB includes major sedimentary depocentres such as the Tirari and Callabonna sub-basins which have been active sites of deposition throughout the Cenozoic. The stratigraphy of the LEB is dominated by the Eyre, Namba and Etadunna formations, as well as overlying Pliocene to Quaternary sediments.</div><div><br></div><div>The National Groundwater Systems Project, part of Geoscience Australia's Exploring for the Future Program (https://www.eftf.ga.gov.au/), is transforming our understanding of the nation's major aquifer systems. With an initial focus on the Lake Eyre Basin, we have applied an integrated geoscience systems approach to model the basin's regional stratigraphy and geological architecture. This analysis has significantly improved understanding of the extent and thickness of the main stratigraphic units, leading to new insights into the conceptualisation of aquifer systems in the LEB.</div><div><br></div><div>Developing the new understanding of the LEB involved compilation and standardisation of data acquired from thousands of petroleum, minerals and groundwater bores. This enabled consistent stratigraphic analysis of the major geological surfaces across all state and territory boundaries. In places, the new borehole dataset was integrated with biostratigraphic and petrophysical data, as well as airborne electromagnetic (AEM) data acquired through AusAEM (https://www.eftf.ga.gov.au/ausaem). The analysis and integration of diverse geoscience datasets helped to better constrain the key stratigraphic horizons and improved our overall confidence in the geological interpretations.</div><div><br></div><div>The new geological modelling of the LEB has highlighted the diverse sedimentary history of the basin and provided insights into the influence of geological structures on modern groundwater flow systems. Our work has refined the margins of the key depocentres of the Callabonna and Tirari sub-basins, and shown that their sediment sequences are up to 400 m thick. We have also revised maximum thickness estimates for the main units of the Eyre Formation (185 m), Namba Formation (265 m) and Etadunna Formation (180 m).</div><div><br></div><div>The geometry, distribution and thickness of sediments in the LEB is influenced by geological structures. Many structural features at or near surface are related to deeper structures that can be traced into the underlying Eromanga and Cooper basins. The occurrence of neotectonic features, coupled with insights from geomorphological studies, implies that structural deformation continues to influence the evolution of the basin. Structures also affect the hydrogeology of the LEB, particularly by compartmentalising groundwater flow systems in some areas. For example, the shallow groundwater system of the Cooper Creek floodplain is likely segregated from groundwater in the nearby Callabonna Sub-basin due to structural highs in the underlying Eromanga Basin.</div><div> Abstract submitted and presented at the 2023 Australian Earth Science Convention (AESC), Perth WA (https://2023.aegc.com.au/)

  • <div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources.&nbsp;&nbsp;Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div><div><br></div><div>The Proterozoic Birrindudu Basin is an underexplored region that contains sparse geological data. Strata of similar age are highly prospective to the east, in the McArthur and South Nicholson basins and the Mount Isa region. To investigate this underexplored and data-poor region, the L214 Northwest Northern Territory Seismic Survey was acquired in August to September 2023 by GA and co-funded by the Northern Territory Government. Prior to this survey the region contained minimal seismic data. To complement the acquisition of the seismic survey, a sampling program of legacy stratigraphic and mineral exploration drill holes was also undertaken.</div><div><br></div><div>The new sampling program and seismic reflection data acquired over the Birrindudu Basin and its flanks, has identified many areas of exploration opportunity. This has almost tripled seismic coverage over the Birrindudu Basin, which has enabled new perspectives to be gained on its geology and relationship to surrounding regions. The new seismic has shown an increase in the extent of the Birrindudu Basin, revealing the presence of extensive concealed Birrindudu Basin sedimentary sequences and major, well preserved depocentres. In the central Birrindudu Basin and Tanami Region, shallow basement and deep-seated faults are encouraging for mineralisation, as these structures have the potential to focus mineralised fluids to the near surface. The clear presence of shallow Tanami Region rocks underlying the southern Birrindudu Basin sequences at the northern end of line 23GA-NT2 extends the mineral resource potential of the Tanami Region further north into the southern Birrindudu Basin. A new minimum age of 1822±7 Ma for the deposition of metasediments in drill hole LBD2 for rocks underlying the central Birrindudu Basin, extends the age-equivalent mineral-rich basement rocks of the Tanami Region north into the central Birrindudu Basin – extending the mineral resource potential into a new region.</div><div><br></div><div>The continuous stratigraphy imaged of the Birrindudu Basin by the new seismic is encouraging for energy prospectivity, as the system elements needed for an effective petroleum system, better defined by the new sampling program results, have been imaged to extend over a wider and deeper area. New organic petrological analysis and reflectance data indicate the sampled sections have reached thermal maturity suitable for hydrocarbon generation. Oil inclusion analyses provide evidence for oil generation and migration, and hence elements of a petroleum system are present in the central and northwestern Birrindudu Basin. With the expanded breadth of these rocks demonstrated on the seismic, this greatly increases the spatial extent of hydrocarbon prospectivity in Birrindudu Basin.</div>

  • <div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources.</div><div><br></div><div>In order to gain insights into the resource potential of the South Nicholson region, a key region of focus for EFTF, National Drilling Initiative (NDI) Carrara&nbsp;1 stratigraphic drill hole was completed in late 2020, as a collaboration between Geoscience Australia, the Northern Territory Geological Survey (NTGS), and the MinEx CRC. NDI Carrara&nbsp;1 is the first drill hole to intersect the, as yet, undifferentiated Proterozoic rocks of the newly defined Carrara Sub-Basin within the South Nicholson region. NDI Carrara&nbsp;1 is located on the western flank of the Carrara Sub-basin, reaching a total depth of 1751&nbsp;m, intersecting ca. 630&nbsp;m of Cambrian Georgina Basin overlying ca. 1100&nbsp;m of Proterozoic carbonates, black shales and minor siliciclastics.</div><div><br></div><div>Geoscience Australia is undertaking a range of investigations on the lithology, stratigraphy and geotechnical properties of NDI Carrara&nbsp;1 based on wireline data, as well as undertaking a range of analyses of over 400 physical samples recovered through the entire core. These analyses include geochronology, isotopic studies, mineralogy, inorganic and organic geochemistry, petrophysics, geomechanics, thermal maturity, and petroleum systems investigations. Hylogger™ data is available at the NTGS Geoscience Exploration and Mining Information System (GEMIS) webpage.</div><div><br></div><div>This data release presents results for analyses on selected rock samples from NDI Carrara 1, conducted by the Mawson Analytical Spectrometry Services, University of Adelaide, under contract to Geoscience Australia. These results include:</div><div><br></div><div>1.&nbsp;&nbsp;&nbsp;&nbsp;Carbon (δ13C), oxygen (δ18O) and strontium (87Sr/86Sr) isotopes on carbonate bearing samples, and</div><div>2.&nbsp;&nbsp;&nbsp;&nbsp;Trace element data on the leachates prepared for 87Sr/86Sr ratio analyses.</div><div><br></div>

  • <div>This dataset represents the second version of a compilation of borehole stratigraphic unit data on a national scale (Figure 1). It builds on the previous Australian Borehole Stratigraphic Units Compilation (ABSUC) Version 1.0 (Vizy &amp; Rollet, 2023a) with additional new or updated stratigraphic interpretation on key boreholes located in Figure 2. Its purpose is to consolidate and standardise publicly accessible information from boreholes, including those related to petroleum, stratigraphy, minerals, and water. This compilation encompasses data from states and territories, as well as less readily available borehole logs and interpretations of stratigraphy.</div><div>&nbsp;</div><div>This study was conducted as part of the National Groundwater Systems (NGS) Project within the Australian Government's Exploring for the Future (EFTF) program. Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. More information is available at http://www.ga.gov.au/eftf and https://www.eftf.ga.gov.au/national-groundwater-systems.</div><div>&nbsp;</div><div>As our understanding of Australian groundwater systems expands across states and territories, including legacy data from the 1970s and recent studies, it becomes evident that there is significant geological complexity and spatial variability in stratigraphic and hydrostratigraphic units nationwide. Recognising this complexity, there is a need to standardise diverse datasets, including borehole location and elevation, as well as variations in depth and nomenclature of stratigraphic picks. This standardisation aims to create a consistent, continent-wide stratigraphic framework for better understanding groundwater system for effective long-term water resource management and integrated resource assessments.</div><div>&nbsp;</div><div>This continental-scale compilation consolidates borehole data from 53 sources, refining 1,117,693 formation picks to 1,010,483 unique records from 171,396 boreholes across Australia. It provides a consistent framework for interpreting various datasets, enhancing 3D aquifer geometry and connectivity. Each data source's reliability is weighted, prioritising the most confident interpretations. Geological units conform to the Australian Stratigraphic Units Database (ASUD) for efficient updates. Regular updates are necessary to accommodate evolving information. Borehole surveys and dip measurements are excluded. As a result, stratigraphic picks are not adjusted for deviation, potentially impacting true vertical depth in deviated boreholes.</div><div>&nbsp;</div><div>This dataset provides:</div><div>ABSUC_v2&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Australian stratigraphic unit compilation dataset (ABSUC)</div><div>ABSUC_v2_TOP&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A subset of preferred top picks from the ABSUC_v2 dataset</div><div>ABSUC_v2_BASE&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A subset of preferred base picks from the ABSUC_v2 dataset</div><div>ABSUC_BOREHOLE_v2&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;ABSUC Borehole collar dataset</div><div>ASUD_2023&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A subset of the Australia Stratigraphic Units Database (ASUD)</div><div>&nbsp;</div><div>Utilising this uniform compilation of stratigraphic units, enhancements have been made to the geological and hydrogeological surfaces of the Great Artesian Basin, Lake Eyre Basin and Centralian Superbasin. This compilation is instrumental in mapping various regional groundwater systems and other resources throughout the continent. Furthermore, it offers a standardised approach to mapping regional geology, providing a consistent foundation for comprehensive resource impact assessments.</div>

  • <div>NDI Carrara 1 is a deep stratigraphic drill hole completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-Basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) recently acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1100 m of Proterozoic sedimentary rocks uncomformably overlain by 630 m of Cambrian Georgina Basin carbonates. A comprehensive geochemical program designed to provide information about the region’s resource potential was carried out on samples collected at up to 4 meter intervals. This report presents data from Rock-Eval pyrolysis analyses undertaken by Geoscience Australia on selected rock samples to establish their total organic carbon content, hydrocarbon-generating potential and thermal maturity.</div>

  • <div>This data package contains interpretations of airborne electromagnetic (AEM) conductivity sections in the Exploring for the Future (EFTF) program’s Eastern Resources Corridor (ERC) study area, in south eastern Australia. Conductivity sections from 3 AEM surveys were interpreted to provide a continuous interpretation across the study area – the EFTF AusAEM ERC (Ley-Cooper, 2021), the Frome Embayment TEMPEST (Costelloe et al., 2012) and the MinEx CRC Mundi (Brodie, 2021) AEM surveys. Selected lines from the Frome Embayment TEMPEST and MinEx CRC Mundi surveys were chosen for interpretation to align with the 20&nbsp;km line-spaced EFTF AusAEM ERC survey (Figure 1).</div><div>The aim of this study was to interpret the AEM conductivity sections to develop a regional understanding of the near-surface stratigraphy and structural architecture. To ensure that the interpretations took into account the local geological features, the AEM conductivity sections were integrated and interpreted with other geological and geophysical datasets, such as boreholes, potential fields, surface and basement geology maps, and seismic interpretations. This approach provides a near-surface fundamental regional geological framework to support more detailed investigations. </div><div>This study interpreted between the ground surface and 500&nbsp;m depth along almost 30,000 line kilometres of nominally 20&nbsp;km line-spaced AEM conductivity sections, across an area of approximately 550,000&nbsp;km2. These interpretations delineate the geo-electrical features that correspond to major chronostratigraphic boundaries, and capture detailed stratigraphic information associated with these boundaries. These interpretations produced approximately 170,000 depth estimate points or approximately 9,100 3D line segments, each attributed with high-quality geometric, stratigraphic, and ancillary data. The depth estimate points are formatted for compliance with Geoscience Australia’s (GA) Estimates of Geological and Geophysical Surfaces (EGGS) database, the national repository for standardised depth estimate points. </div><div>Results from these interpretations provided support to stratigraphic drillhole targeting, as part of the Delamerian Margins NSW National Drilling Initiative campaign, a collaboration between GA’s EFTF program, the MinEx CRC National Drilling Initiative and the Geological Survey of New South Wales. The interpretations have applications in a wide range of disciplines, such as mineral, energy and groundwater resource exploration, environmental management, subsurface mapping, tectonic evolution studies, and cover thickness, prospectivity, and economic modelling. It is anticipated that these interpretations will benefit government, industry and academia with interest in the geology of the ERC region.</div>

  • <div>A prerequisite to understanding the evolution and resource potential of a basin is to establish a reliable stratigraphic framework that enables the correlation of rock units across multiple depocentres. Establishing a stratigraphic model for the Adavale Basin is challenging due to its structurally complexity, lack of well penetration and its lateral changes in facies. Biostratigraphy appears broad-scale, and despite providing chronostratigraphic control for the Lower Devonian Gumbardo Formation when combined with U/Pb zircon geochronology, the rest of the Devonian succession is hampered by a lack of microfossil assemblages and their poor preservation. The aim of this study is to establish an independent chemostratigraphic correlation across the Adavale Basin using whole rock inorganic geochemistry. Within this study, a total of 1489 cuttings samples from 10 study wells were analysed by Inductively Coupled Plasma – Optical Emission Spectrometry and Inductively Coupled Plasma – Mass Spectrometry for whole rock geochemistry, in order to establish an independent chemostratigraphic zonation scheme. Based on key elemental ratios selected to reflect changes in feldspars, clay minerals and provenance, the Devonian-aged stratigraphy is characterised into four chemostratigraphic mega-sequences that encompass the Gumbardo Formation (Mega-sequence 1); the Eastwood Formation, the Log Creek Formation and the Lissoy Sandstone (Mega-sequence 2); the Bury Limestone and the Boree Salt formations (Mega-sequence 3); and the Etonvale and the Buckabie formations (Mega-sequence 4). These mega-sequences have been further subdivided into a series of chemostratigraphic sequences that can be correlated across the study wells, establishing a regional correlation framework.&nbsp;&nbsp;&nbsp;</div> This Paper was submitted/presented to the 2023 Australian Petroleum Production & Exploration Association (APPEA) Conference 15-18 May, (https://www.appea.com.au/appea-event/appea-conference-and-exhibition-2023/). <b>Journal Citation:</b> Riley David, Pearce Tim, Davidson Morven, Sirantoine Eva, Lewis Chris, Wainman Carmine (2023) Application of elemental chemostratigraphy to refine the stratigraphy of the Adavale Basin, Queensland. <i>The APPEA Journal</i><b> 63</b>, 207-219. https://doi.org/10.1071/AJ22108

  • <div> A key issue for explorers in Australia is the abundant sedimentary and regolith cover obscuring access to underlying potentially prospective rocks. &nbsp;Multilayered chronostratigraphic interpretation of regional broad line-spaced (~20&nbsp;km) airborne electromagnetic (AEM) conductivity sections have led to breakthroughs in Australia’s near-surface geoscience. &nbsp;A dedicated/systematic workflow has been developed to characterise the thickness of cover and the depth to basement rocks, by delineating contact geometries, and by capturing stratigraphic units, their ages and relationships. &nbsp;Results provide a fundamental geological framework, currently covering 27% of the Australian continent, or approximately 2,085,000&nbsp;km2. &nbsp;Delivery as precompetitive data in various non-proprietary formats and on various platforms ensures that these interpretations represent an enduring and meaningful contribution to academia, government and industry.&nbsp;The outputs support resource exploration, hazard mapping, environmental management, and uncertainty attribution.&nbsp;This work encourages exploration investment, can reduce exploration risks and costs, helps expand search area whilst aiding target identification, and allows users to make well-informed decisions. Presented herein are some key findings from interpretations in potentially prospective, yet in some cases, underexplored regions from around Australia.&nbsp;</div> This abstract was submitted & presented to the 8th International Airborne Electromagnetics Workshop (AEM2023) (https://www.aseg.org.au/news/aem-2023)

  • <div>The Australian Government's Trusted Environmental and Geological Information (TEGI) program is a collaboration between Geoscience Australia and the CSIRO that aims to provide access to baseline geological and environmental data and information for strategically important geological basins. The initial geological focus is on the north Bowen, Galilee, Cooper, Adavale, and their overlying basins. This paper presents seven stratigraphic frameworks from these basin regions that underpin groundwater, environmental and resource assessments, identify intervals of resource potential, and can assist in management of associated risks to groundwater resources and other environmental assets. The construction of stratigraphic frameworks for this program builds upon existing lithostratigraphic schemes to capture the current state of knowledge. The frameworks incorporate play divisions for resource and hydrogeological assessments. A total of 33 play intervals are defined for the north Bowen, Galilee, Cooper, Adavale, and their overlying basins, using chronostratigraphic principles. Where possible, unconformities and flooding surfaces are used to define the lower and upper limits of plays. Data availability and temporal resolution are considered in capturing significant changes in gross depositional environments. The results from this work enable the consistent assessment of shared play intervals between basins, and also highlight uncertainties in the age and correlation of lithostratigraphic units, notably in the Galilee and north Bowen Basins.</div> This presentation was given at the 2023 Australasian Exploration Geoscience Conference (AEGC) 13-18 March, Brisbane (https://2023.aegc.com.au/)