salt deposits
Type of resources
Keywords
Publication year
Topics
-
The integrated use of seismic and gravity data can help to assess the potential for underground hydrogen storage in salt caverns in the offshore Polda Basin, South Australia. Geophysical integration software was trialled to perform simultaneous modelling of seismic amplitudes and traveltime information, gravity, and gravity gradients within a 2.5D cross-section. The models were calibrated to existing gravity data, seismic and well logs improving mapping of the salt thickness and depth away from well control. Models included known salt deposits in the offshore parts of the basin and assessed the feasibility for detection of potential salt deposits in the onshore basin, where there is limited well and seismic coverage. The modelling confirms that candidate salt cavern storage sites with salt thicknesses greater than 400-500 m should be detectable on low altitude airborne gravity surveys. Identification of lower cost onshore storage sites will require careful calibration of gravity models against measured data, rather than relying on the observation of rounded anomalies associated with salt diapirism. Ranking of the most prospective storage sites could be optimized after the acquisition of more detailed gravity and gradiometry data, preferably accompanied by seismic reprocessing or new seismic data acquisition.