tectonics
Type of resources
Keywords
Publication year
Topics
-
<div>Archean crustal evolution, and its tectonic paradigm, can be directly linked to the evolution of the mantle, the hydrosphere-atmosphere, oxygenation of the Earth, and the formation and storage of ore deposits. Hence, it is vital to understand the evolution of the early crust if we are to understand our planet’s evolution as well as transformational events in its history.</div><div> The collection of vast amounts of isotopic data, especially U-Pb, Sm-Nd, Lu-Hf, and δ18O, over the last 30 years, has significantly advanced our understanding of crustal processes and their timing. However, we rarely look at these data in a spatial context. This study aims to constrain the time-space evolution of the south-east Superior Craton, Canada, by mapping the zircon Hf-O isotopes and trace element data from 148 Archean magmatic rocks (6340 total analyses).</div><div> In Lu-Hf space, the dataset demonstrates the highly juvenile nature of this region, with the majority of values between εHfi +6 and +2. When plotted spatially, the most juvenile data (+4 to +6 εHfi) delineate an E-W oriented zone, broadly in-line and sub-parallel to the Cadillac-Larder Lake and Porcupine-Destor structures. Surrounding this juvenile region is less juvenile crust (0 to +3 εHf). Corresponding δ18O values show that light to mantle-like data (3.0-5.6‰) correlate with the most juvenile crust imaged by the εHf, with heavier δ18O (5.8-7.5‰) plotting to the south, east and west of this zone. Zircon trace element proxies for hydration (Eu/Eu*), oxidation (ΔFMQ using Ti, Ce, U), and continental vs. oceanic origin (Ui/Yb) replicate the pattern observed in the Lu-Hf and δ18O. This suggests that, broadly, the SE Superior consists of a central E-W orientated juvenile zone consisting of the most reduced, least hydrated, least continental, and most high-temperature hydrothermally-altered crust. This zone is surrounded by crust which is more hydrated, oxidised, has a greater supracrustal δ18O component, and is slightly less juvenile. The major ore systems of the Abitibi subprovince, including VMS, gold and komatiite-hosted Ni-Cu-PGE systems, fall within the E-W highly-juvenile zone.</div><div> Current tectonic models for this region of the Superior Craton range from (1) long-lived Neoarchean subduction across the whole Abitibi tectono-thermal ‘event’ (2750-<2695 Ma) – ‘horizontal’ tectonics; and (2) a variety of non-arc processes such as plume-related crustal overthickening (i.e., oceanic plateau), sagduction/drip tectonics, and subcretion, amongst others – ‘vertical’ tectonics. Models combining arc and non-arc processes have also been suggested (i.e., plume-arc interaction), and our data broadly support a combined model. We propose the E-W zone delineated by the various geochemical data represents a paleo-rift zone, driven by ambient mantle or mantle plume processes. The dry, reduced, oceanic character of the zone appears to preclude an arc or back-arc setting prior to ca. 2.7 Ga. However, temporal changes in hydration, oxidation, and the increased heavy δ18O component at ca. 2.7 Ga suggest a major geodynamic shift, potentially marking the onset of subduction and associated compression. This is contribution 2020-050 of the Mineral Exploration Research Centre (MERC) Metal Earth project.</div><div> This Abstract was submitted/presented to the 2023 6th International Archean Symposium (6IAS) 25 - 27 July (https://6ias.org/)
-
The 2.1─1.79 Ga Trans-Australian and Canadian Trans-Hudson orogens preserve a common record of Himalayan-scale orogenesis and voluminous Cordilleran-style magmatism behind which turbidite-dominated sedimentary sequences evolved in a back-arc or retro-arc foreland setting. Successive cycles of subduction retreat and advance drove the orogenic process, culminating in continent-continent collision and closure of a shared and formerly contiguous ocean basin – the Paleoproterozoic Diamantina and Manikewan oceans. Cordilleran-style arc magmatism in proto-Australia commenced along the southern reaches of the Diamantina Ocean with emplacement of the 2005-1975 Ma Dalgaringa batholith along the leading edge of the Pilbara Craton (Gascoyne Province) before both it and its host craton docked against the Yilgarn Craton, resulting in the Glenburgh Orogeny. After a brief episode of post-kinematic granite magmatism from 1965─1945 Ma, tectonic activity switched to the opposing margin of the Diamantina Ocean in what is now northern Australia where a further three cycles of upper plate orogenesis and Cordilleran-style magmatism occurred from 1890─1850 Ma, 1840─1810 Ma and 1810─1760 Ma along a convergent continental margin extending from the Kimberley and Pine Creek regions southward through the Mount Isa domain into the eastern Gawler Craton. Batholiths developed along this margin include granites of both low and high Sr/Y composition with the more adakitic varieties interpreted to have been intruded during periods of enhanced asthenospheric upwelling accompanying the opening of one or more slab windows following slab breakoff, tearing and/or subduction of an actively spreading oceanic ridge. Terminal collision between the North and South Australian (Mawson) cratons at ca. 1790 Ma brought this succession of subduction-related events to a close, although neither this event nor the corresponding Trans-Hudson orogen need equate to final assembly of the Nuna supercontinent. Instead, the 1870 Ma peak in global compilations of magmatic and detrital zircon ages may be more simply interpreted as the result of elevated tectonism and magmatism along a Paleoproterozoic Cordilleran-style continental plate margin that was trans-continental in scale and continued uninterrupted from proto-Australia into northern Canada and beyond. <b>Citation:</b> G.M. Gibson, D.C. Champion, M.P. Doublier; The Paleoproterozoic Trans-Australian Orogen: Its magmatic and tectonothermal record, links to northern Laurentia, and implications for supercontinent assembly. GSA Bulletin 2024; doi: https://doi.org/10.1130/B36255.1
-
Lead isotope data from ore deposits and mineral occurrences in the Tasman Element of eastern Australia have been used to construct isotopic maps of this region. These maps exhibit systematic patterns in parameters derived from isotope ratios. The parameters include μ (238U/204Pb), as calculated using the Cumming and Richards (1975) lead evolution model, and the difference between true age of mineralisation and the Cumming and Richards lead isotope model age of mineralisation (Δt). Variations in μ coincide with boundaries at the orogen, subprovince and zone scales. The boundary between the Lachlan and New England orogens is accompanied by a decrease in μ, and within the Lachlan Orogen, the Central Subprovince is characterised by μ that is significantly higher than in the adjacent Eastern and Western subprovinces. Within the Eastern Subprovince, the Cu-Au-rich Macquarie Arc is characterised by significantly lower μ relative to adjacent rocks. The Macquarie Arc is also characterised by very high Δt (generally above 200 Myr). Other regions characterised by very high Δt include western Tasmania, the southeastern New England Orogen, and the Hodgkinson Province in northern Queensland. These anomalies are within a broad pattern of decreasing Δt from east to west, with Paleozoic deposits within or adjacent to Proterozoic crust characterised by Δt values of 50 Myr or below. The patterns in Δt are interpreted to reflect the presence of the two major tectonic components involved in the Paleozoic Tasman margin in Australia (cf., Münker, 2000): subducting proto-Pacific crust (Δt >150 Myr), and Proterozoic Australia crust (Δt < 50 Myr) on the over-riding plate. Proterozoic Australia crustal sources are interpreted to dominate the western parts of the Tasman Element and Proterozoic crust further to the west, whereas Pacific crustal sources are inferred to characterise western Tasmania and much of the eastern part of the Tasman Element. Contrasts in Δt between the Cambrian Mount Read Volcanics in western Tasmania and similar aged rocks in western Victoria and New South Wales make direct tectonic correlation between these rocks problematic.
-
<div>The presence of Pliocene marine sediments in the Myponga and Meadows basins within the Mt Lofty Ranges south of Adelaide is testament to over 200 m of tectonic uplift within the last 5 Myr (e.g., Sandiford 2003, Clark 2014). The spatiotemporal distribution of uplift amongst the various faults within the range and along the range fronts is poorly understood. Consequently, large uncertainties are associated with estimates of the hazard that the faults pose to proximal communities and infrastructure.</div><div> </div><div>We present the preliminary results of a paleoseismic investigation of the southern Willunga Fault, ~40 km south of Adelaide. Trenches were excavated across the fault to examine the relationships between fault planes and sedimentary strata. Evidence is preserved for 3-5 ground-rupturing earthquakes since the Middle to Late Pleistocene, with single event displacements of 0.5 – 1.7 m. Dating of samples will provide age constraints on the timing of these earthquakes. This most recent part of the uplift history may then be related to the longer-term landscape evolution evidenced by the uplifted basins, providing an enhanced understanding of the present-day seismic hazard.</div> This abstract was presented at the Australian & NZ Geomorphology Group (ANZGG) Conference in Alice Springs 26-30 September 2022. https://www.anzgg.org/images/ANZGG_2022_First_circular_Final_V3.pdf
-
<div>As a planet without plate tectonics, Mars has a fundamentally different setting to Earth, and yet we observe many familiar structural features at the surface. Mars is also home to the largest volcanoes in the Solar System, which are the spectacular surface expressions of an enormous, long-lived magmatic system underlying the region known as Tharsis. The many surface structures in the Tharsis region are an important record of the geologic and volcanic history of Mars. They can provide insight into the timing and nature of volcanic systems, which is important to investigations of past climate and potential habitability. This talk will explore how volcanism has driven formation of the structures we see on the surface of Mars and how this can help us answer important questions about the evolution of the red planet. The work presented is based on Dr Claire Orlov's PhD research conducted at the University of Leeds, UK. </div>